

Summary and Outlook

Yifei Yuan

ETH Zürich & University of Copenhagen

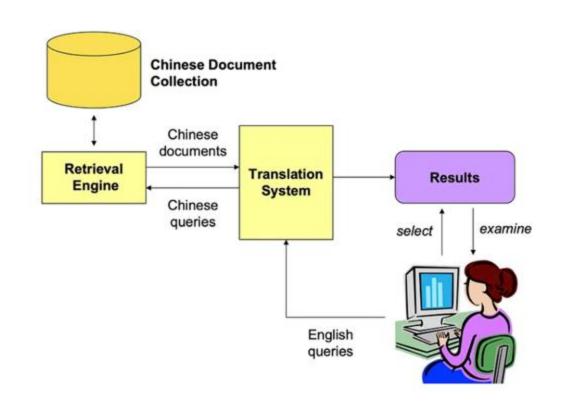
Outline

Defi	nition & preliminaries - Yifei
	Query understanding
	LLM-based conversational information seeking
LLM	-based Query Enhancement - Yifei
	Resolving ambiguity in queries
	Multimodal conversational query rewrite
LLM	-based Proactive Query Management – Yang
	Unanswerable query mitigation
	Uncertain query clarification
LLM	-based Conversational Interaction – Mohammad
	Balancing user and system initiative
	LLM-based user simulation
Conv	versational Query Understanding Evaluation – Zahra
	End-to-end evaluation
	LLM-based relevance assessment

Open Challenges

- Multilingual and Multimodal Extensions
 - Multilingual and cross-cultural query understanding
 - Expanding query understanding beyond text
- Real-time adaptation to evolving user needs
 - Shift toward user-personalized dialogue agents
 - Increasing reliance on multi-turn reasoning in LLMs
 - ☐ Integration of retrieval-augmented generation for real-time knowledge access

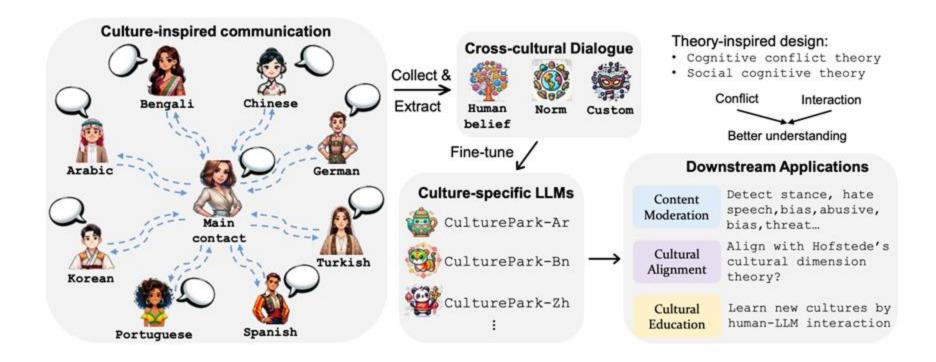
Translation, a common approach for handling multilingual information retrieval



Cross-cultural query understanding requires:

- Multilingual semantic alignment
- Cultural context awareness
- Multimodal grounding
- Adaptivity to different user expectations

Even LLMs like GPT-4 can make cultural mistakes!

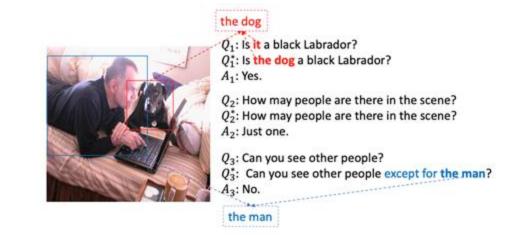


Why Multimodality Matters

- Text-only input limits user expression
- Real-world queries often include contents alongside text
- Multimodal systems improve context awareness and intent resolution

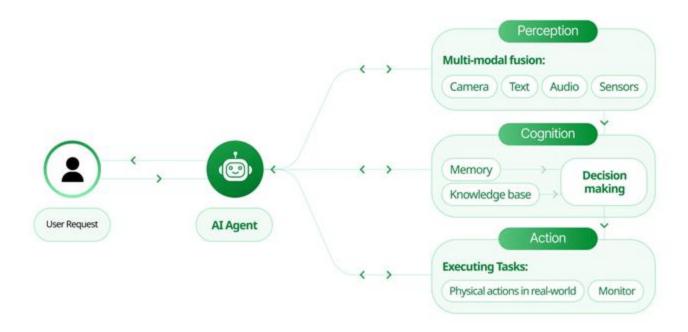
Challenges

- Aligning different modalities in real-time
- Lack of high-quality multimodal training datasets
- Maintaining performance and interpretability across domains

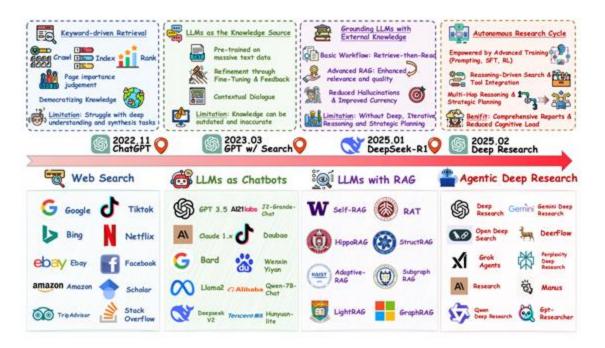


Shift toward user-personalized dialogue agents

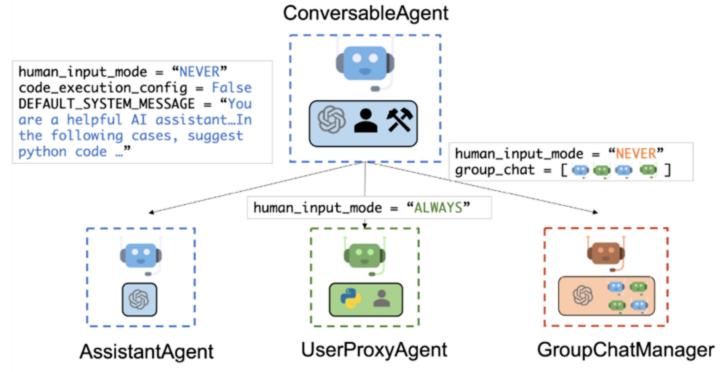
Agentic AI in conversational search enables systems to proactively plan, reason, and act across multiple turns to deliver more context-aware, goal-oriented, and dynamic information-seeking experiences.



From search to agentic search



AutoGen, a multi-agent framework for conversation interaction



Multi-turn Planning

- Increasing reliance on multi-turn reasoning in LLMs
- Current LLMs still face reasoning and planning challenges when generating clarifying questions.
- When faced with complex and hidden user needs, the agent faces the problem of redundancy, inconsistency, and early enumeration.

Reasoning issue (Inconsistency)

G: Is the entity a living being? J: No.

G: Is the entity an object or a thing? J: Yes.

G: Is the object typically found indoors? J: Yes.

G: Is the object used primarily for a specific purpose? J: Yes.

G: Is the object small and portable? J: Maybe.

G: Is the object electronic? J: Yes.

G: Is the object a device used for communication J: No.

G: Is the object a device used for **entertainment** or media J: No.

G: Is the object a device used for productivity or work J: Yes.

G: Is the object a laptop? J: No.

G: Is the object a game console? J: No.

..

When tasked with generating clarifying questions to guess a hidden item, GPT-4 only achieves about a **26%** success rate, with the correct guess taking **nearly 18 turns on average**.

	Things				Celebrities			
	#Turns (↓)	Success (†)	#Yes	Score (†)	#Turns (↓)	Success (†)	#Yes	Score (†)
GPT-4	17.8±0.2	0.31±0.03	5.9±0.1	0.26±0.02	17.3±0.1	0.50±0.02	6.8±0.2	0.40±0.02
GPT-3.5	18.2 ± 0.2	0.28 ± 0.02	6.3 ± 0.1	0.23 ± 0.02	18.8 ± 0.2	0.27 ± 0.03	7.4 ± 0.2	0.21 ± 0.03
Claude-2	18.4 ± 0.3	0.21 ± 0.03	5.0 ± 0.1	0.18 ± 0.03	17.6 ± 0.2	0.31 ± 0.02	5.6 ± 0.1	0.26 ± 0.02
Claude-1	18.8 ± 0.1	0.16 ± 0.02	4.2 ± 0.1	0.13 ± 0.02	17.7 ± 0.2	0.29 ± 0.03	5.3 ± 0.2	0.25 ± 0.02
Vicuna 13B	18.4 ± 0.1	0.18 ± 0.02	5.0 ± 0.2	0.15 ± 0.02	18.7 ± 0.2	0.22 ± 0.03	6.1 ± 0.1	0.18 ± 0.02
Vicuna 7B	19.5 ± 0.2	0.09 ± 0.02	5.7 ± 0.2	0.07 ± 0.02	19.6 ± 0.3	0.06 ± 0.02	5.9 ± 0.2	0.05 ± 0.02
Mistral 7B	18.9 ± 0.1	0.13 ± 0.02	3.8 ± 0.5	0.11 ± 0.02	18.2 ± 0.1	0.22 ± 0.04	4.3 ± 0.1	0.20 ± 0.03
V-FT 7B (All)	19.2±0.1	0.13±0.01	6.1±0.1	0.10±0.01	19.3±0.1	0.16±0.02	7.6±0.3	0.13±0.02
V-FT 7B (Suc.)	18.0 ± 0.1	0.23 ± 0.01	5.1 ± 0.2	0.20 ± 0.01	19.0 ± 0.2	0.15 ± 0.02	6.3 ± 0.2	0.13 ± 0.02
V-FT 13B (All)	18.6 ± 0.2	0.21 ± 0.03	6.1 ± 0.2	0.17 ± 0.02	18.8 ± 0.2	0.22 ± 0.01	6.2 ± 0.2	0.18 ± 0.01
V-FT 13B (Suc.)	18.0 ± 0.2	0.25 ± 0.02	4.5 ± 0.1	0.21 ± 0.03	18.4±0.3	0.23 ± 0.04	5.9 ± 0.2	0.19 ± 0.03
V-RLGP 7B	17.8±0.1	0.26±0.02	4.7±0.1	0.22±0.01	18.8±0.1	0.16±0.01	5.9±0.1	0.14±0.00
V-RLGP 13B	17.9 ± 0.1	0.27 ± 0.02	4.5 ± 0.1	0.23 ± 0.01	18.5±0.2	0.26 ± 0.03	6.1 ± 0.1	0.21 ± 0.02

Possible ways for enhancing reasoning: Chain-of-Thought (CoT) Prompting, ReACT: Reasoning and Acting, RLHF, Self-reflection, ...

	Turn-Lev	el Reward	Outcome Reward		
Model	Tool Execution (0-0.2)	Search Answer (0-0.5)	XML Format (0-0.2)	Exact Match (0-1)	
Qwen2.5-7B-Base	0.0559	0.0934	0.1562	0.0469	
Qwen2.5-7B-Instruct	0.1626	0.2814	0.1982	0.1559	
Qwen2.5-7B-Base + GRPO-OR	0	0	0.04	0	
Qwen2.5-7B-Base + GRPO-MR	0.2	0.3724	0.1994	0.3346	
Qwen2.5-7B-Base + MT-GRPO	0.2	0.3926	0.1996	0.5010	

Variants	GPT-4o		Llama	3.1 70B	Llama 3.1 405B		
variants	1@1	1@3	1@1	1@3	1@1	1@3	
Single-turn	17.0	27.6	23.2	27.3	27.8	32.9	
+ CoT	25.5+8.5	$29.0_{+1.4}$	25.5+2.3	$28.9_{+1.6}$	$25.1_{-2.7}$	$31.8_{-1.1}$	
+ Multi-turn	-	$23.1_{-4.5}$	-	29.5+2.2	-	35.4+2.5	
+ Multi-turn CoT	-	31.5+3.9	-	$31.5_{+4.2}$	-	40.1,+7.2	

Intergrating RAG for real-time knowledge access

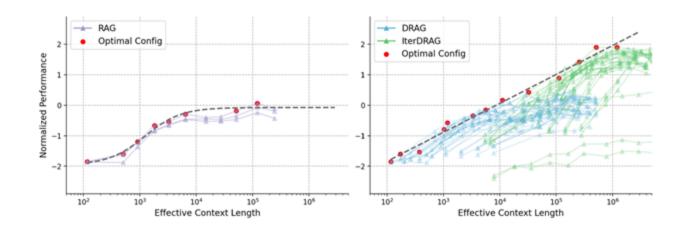
RAG allows for instant knowledge update from an external knowledge base

Key issues:

What to retrieve?

When to retrieve?

How to retrieve?



In RAG, scaling becomes **multi-dimensional** due to the addition of a **retrieval system**.

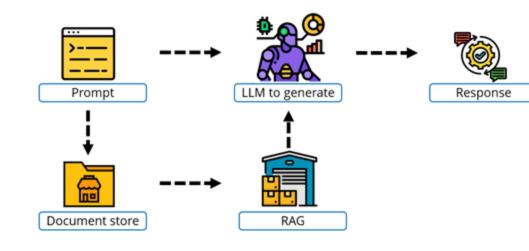
Future Direction

Knowledge-Aware Query Interpretation

Challenge: Query understanding often ignores world knowledge or domain-specific constraints.

Direction: Inject structured knowledge (e.g., KBs, graphs, taxonomies) into LLMs to enable semantic grounding and facet-level disambiguation.

Research idea: Jointly learn facet extraction + semantic typing + query understanding using adapter layers or retrieval-enhanced decoding.



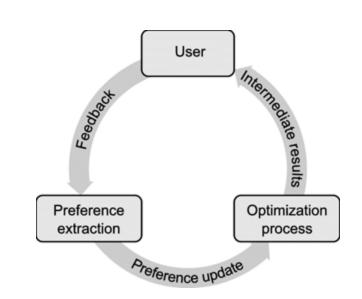
Future Direction

User-In-the-Loop Adaptive Query Understanding

Challenge: LLMs often hallucinate user intent

Direction: Use **relevance feedback**, **user corrections**, or **interaction signals** to continuously refine query interpretation during the session.

Research idea: Online LLM fine-tuning or reward shaping using bandit signals from user engagement.

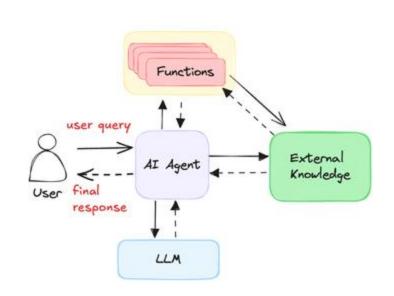


Future Direction

LLMs-as-agents can "think" about whether their current interpretation is sufficient.

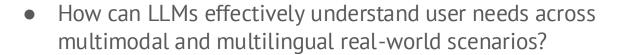
Meta-level Decision Making: When to Ask, When to Act

Agentic models can call APIs or retrieve from knowledge bases to clarify ambiguous queries.



Open Questions

• The best way to accurately understand and predict complex user needs through effective interaction remains largely underexplored.



 Evaluation metrics need to be designed for better capturing user satisfaction in conversational search.

Q & A

Thank you for joining us today!

All the materials at https://sigirusertutorial.github.io/