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Conversational Interactions

LLM-based conversational interactions improve query understanding:
o Dynamic interactions,
o Back-and-forth exchanges,
o Clarify user intent,
o Enhance search precision.

Conversational search:

o Unlike traditional search scenarios, builds context progressively,
o Capture nuances,
o Lead to more complex dynamics between the user and the system.



Interaction Simulation

Complexity of user-system interactions.

Scarcity of user data.

Privacy concerns.

More complex dynamics between user and system.

Ability of the LLMs to perform multiple tasks and generalize well based on the
massive training data.

Use LLMs to simulate diverse behavior, intent, and query patterns.

Help models learn to tackle complex queries and varied user needs effectively.

See some example works that have tried this approach.



BASES: Web Search Simulation via LLM Agents

e User profile attributes:

o Static
o Dynamic Static Attributes Career Dynamic Attributes
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Wang et al., “An In-depth Investigation of User Response Simulation for Conversational Search”, (WWW ‘24)
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BASES: Web Search Simulation via LLM Agents

e Agents simulate multi-turn search sessions:

o Search
o Click
o Finish

e Preliminary results show that single prompt leads to bad results.

e Two prompting strategies:
o Query Behavior Prompting
m Keyword-based queries
m Consider the information need and user profile
o Click Behavior Prompting
m Based on the top 10 results
m Agents provide explanation why they decided to click on a page

Wang et al., “An In-depth Investigation of User Response Simulation for Conversational Search”, (WWW °24)
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BASES: Results and Findings

What if the behavior variations

were the result of re-
e 90% consistency with real user query/click patte generation variation or random <
o High realism seed?
o TREC-Session dataset
o Compare query generation and rewriting behavior
o Top-1 clicks of agent vs. real user

e Users with similar profiles behave differently.

o Personalization preserved
o Similar profiles with little differences tested o
o Differences in the behavior was observed

Pame information needs

Wang et al., “An In-depth Investigation of User Response Simulation for Conversational Search”, (WWW ‘24)
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BASES: Results and Findings

e BASES-trained BERT outperforms real-user-trained models.
o Model trained on simulated data vs. human-generated data.
o Tested on English and Chinese benchmarks:
m English data generated with GPT-4 and human annotation.
m Chinese data sampled from Baidu search logs.

Methods #Session Chinese Benchmark
(#Click) MRR NDCG@1 NDCG@3
BM25 - 45.16 27.20 41.39
BERT (TREC-Session) 1,257 - - -
BERT (AOL) 219,748 - - -
BERT (Tiangong-ST) 143,155 43.28 22.59 38.91
BERT (BASES) 1,000 51.78 35.56 47.98
BERT (BASES) 10,000 53.52 35.98 50.72

Wang et al., “An In-depth Investigation of User Response Simulation for Conversational Search”, (WWW ‘24)
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Simulation of Mixed-initiative Interactions

e | LM-based user simulation for mixed-initiative scenarios:
o USi: based on GPT-2
o ConvSim: based on GPT-3

e More diverse set of simulated user actions:
o Provide explicit feedback
o Answer clarifying questions
o Engage in a multi-turn information-seeking conversation

Sekuli¢ et al., “Evaluating Mixed-initiative Conversational Search Systems via User Simulation”, (WSDM ‘22)

3 Owoicho et al., “Exploiting Simulated User Feedback for Conversational Search: Ranking, Rewriting, and Beyond”, (SIGIR ‘23)
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9

i Conversational
search system

g Respoase generation

Query resolution

Initial retrieval

Re-ranking

(
[
(
L

|
|

Clarification

[ Clarification need (0/1)

[ e
clarifying question

&\




I ConvSim
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Owaoicho et al., “Exploiting Simulated User Feedback for Conversational Search: Ranking, Rewriting, and Beyond”, (SIGIR ‘23)
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Owaoicho et al., “Exploiting Simulated User Feedback for Conversational Search: Ranking, Rewriting, and Beyond”, (SIGIR ‘23)
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13

P 1 want to know the current state
/ of the coral reefs.
\

i Conversational )
search system
"
|’" Clarification )

[ Clarification need (0/1) ]
=
clarifying question
&\_\ < / J




. ConvSim

Dataset:

- Information need description

e |

("User (simulator)

Information need:
Quantifiable current
state of coral reefs

2
[ Feedback

Answer Clarifying
wm( B L ‘Questions

Owoicho et al., “Exploiting Simulated User Feedback for Conversational Search: Ranking, Rewriting, and Beyond”, (SIGIR ‘23)
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Owoicho et al., “Exploiting Simulated User Feedback for Conversational Search: Ranking, Rewriting, and Beyond”, (SIGIR ‘23)
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Owoicho et al., “Exploiting Simulated User Feedback for Conversational Search: Ranking, Rewriting, and Beyond”, (SIGIR ‘23)
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ConvSim: Performance

p

ConvSim [44] USi[61] Ties ||ConvSim [44] Human Ties
%’0 Naturalness 37%" 22% 41% 36% 25% 39%
S Usefulness 449" 19%  37% 36%' 20%  44%
§ Naturalness 45%" 18% 37% 25% 28% 47%
=  Usefulness 62%" 12% 26% 26% 16% 58%

Sekulic et al., “Analysing Utterances in LLM-Based User Simulation for Conversational Search”, (ACM TOIS'24)
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ConvSim: Performance

Hulan DS |61 conyyin [14]

Repeat 2% 0% 3%
Repeat/rephrase 4% 7% 6%
Repeat/simplify 4% 8% 5%
Clarify/refine 63% i 83%
Other 25% 40% 3%
Hallucination 2% 7% 0%

Sekulié et al., “Analysing Utterances in LLM-Based User Simulation for Conversational Search”, (ACM TOIS'24)
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Going Smaller with Finetuning

e Smaller finetuned LLMs can be better in simulation

e Task-oriented dialogues
e Domain awareness
e Finetuning Llama-2 13B

e Less hallucination
e Improved user intent alignment

Wang et al., “An In-depth Investigation of User Response Simulation for Conversational Search”, (IWWW ‘24)
2(§ekulic': et al., “Reliable LLM-based User Simulator for Task-Oriented Dialogue Systems”, (SCI-CHAT 2024)



Finetuning for Feedback

e Finetuning T5 leads to a strong baseline

Generation Metrics

Dataset Model BLEU-3 BLEU-4 ROUGE-L METEOR
GPT-2 (USi[47]) 12.6 9.1 28.2 28.9
Qulac  GPT-3.5 (ConvSim [33])  13.5 9.8 29.1 29.0
T5-small 23.77 19.0" 40.8" 43.2"
GPT-2 (USi[47]) 13.5 9.8 28.8 28.6
ClariQ  GPT-3.5 (ConvSim [33])  13.4 9.7 28.9 28.4
T5-small 24.3" 19.5" 41.0" 43.3"

Wang et al., “An In-depth Investigation of User Response Simulation for Conversational Search”, (WWW ‘24)
21



Proactive Simulation

e User simulator reacts to the system’s action

e An actual user would be more proactive:

o Start a conversation
o Steer the topic exploration by asking further questions

e Leverage LLMs to explore a given topic, as well as reacting to the system’s
response
e QuAC-like setup:

o Student: knows very little about a topic and aims to learn more about it
o Teacher: knows much more and provides response to the Student, based on a provided document

e Replace crowd workers of QUAC with LLMs

Abbasiantaeb et al., “Let the LLMs Talk: Simulating Human-to-Human Conversational QA via Zero-Shot LLM-to-LLM Interactions”, (WSDM’24)
Choi et al., “QuAC: Question Answering in Context”, (EMNLP ‘18)
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SimQuAC

e Simulated conversational question-answering dataset

e (Compare with crowd-sourced dialogues of QUAC
o More natural dialogue flow
o More effective exploratory behavior: more subtopics are covered
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Limitations of Simulation

In-depth analysis of where simulation fails
Misalignment

Errors

Noise

Evaluation limitations

Case study on Qulac and ClariQ

Wang et al., “An In-depth Investigation of User Response Simulation for Conversational Search”, (WWW °24)
25



Limitations of Simulation

In-depth analysis of where simulation fails
® Different types of error discussed
[ ;i — “Dinnd tha hasmanas~na AL tlhn snvnnidant AC+A TThnitnd Cratan? ]
[ i = “How do I register to take the SAT exam?” i

i = “I'm looking for websites that do antique appraisals” ]
a = “Avopraisals”

i = “Find information on various types of computer memory,
and how they are different.”

q = “Memory”

cq = “Who was the first to study the brain and memory?”

G = “I want to know how different they are”

H = “Herman Ebbinguaus.”

26

Reasons T5

Wrong answer type 33.9%
Cooperativeness mismatch 31.1%
Both valid 13.9%
Extra information 10.3%
Noisy reference 5.8%
Miscellaneous 4.2%
Total # ROUGE<0.2 360

Wang et al., “An In-depth Investigation of User Response Simulation for Conversational Search”, (IWWW °24)



I Creating Interaction Sandbox

LLM-based agent
Sandbox environment
High similarity to human behavior

Study two social phenomena:
o (i) information cocoons
o (i) user conformity behaviors.

ID  Name Age Gender  Career

Profile

Module
1 ‘ David ‘ 25  Male - Doctor

Traits ‘

- Caring

Interest

Action

o

A

Wang et al., “User Behavior Simulation with Large Language Model-based Agents”, ACM TOIS, 2025
27



Information Cocoon

e Users only access information similar to their own preference, but los the

opportunity to view more diverse options.

e Information cocoon is measured by entropy:

/# of categories for u

ﬁ:c

2,

B 2,

uelU

ceC

log fu.c

e Smaller E indicates more severe information cocoon

Nguyen et al., “Exploring the filter bubble: the effect of using recommender systems on content diversity”, WWW ‘14
Paio et al., “Human-Al adaptive dynamics drives the emergence of information cocoons”, Nature Machine Intelligence, 2023



Simulating Information Cocoons

e Simulate information cocoon and propose solutions for it.

e Recommender systems:

o 50 agents freely interact with items, leading to an agent-item matrix.
o Recommender systems trained at each round of interaction for 50 times.
o Information cocoon is measured by entropy.

29



Round-Based Simulation with

Pareto-Distributed Agent Actions
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Wang et al., “User Behavior Simulation with Large Language Model-based Agents”, ACM TOIS, 2025
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Wang et al., “User Behavior Simulation with Large Language Model-based Agents”, ACM TOIS, 2025




Implications

e How can LLM-based simulation be used to improve query understanding?

e [LMsto be used to generate query variations - literature has shown the
potential

e Simulation can be informed by the current human variation studies

e (reate sandbox environment

e Enrich existing datasets

e Incorporate query variations in the existing simulators

Alaofi et al., “Can Generative LLMs Create Query Variants for Test Collections? An Exploratory Study”, SIGIR 23
39AbuOnget al, “Classifying Term Variants in Query Formulation”, SIGIR 25



Questions

33
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