

LLM-based Conversational Interaction

Mohammad Aliannejadi

University of Amsterdam

Conversational Interactions

• LLM-based conversational interactions improve query understanding:

- Dynamic interactions,
- Back-and-forth exchanges,
- Clarify user intent,
- Enhance search precision.
- Conversational search:
 - Unlike traditional search scenarios, builds context progressively,
 - Capture nuances,
 - \circ Lead to more complex dynamics between the user and the system.

Interaction Simulation

- Complexity of user-system interactions.
- Scarcity of user data.
- Privacy concerns.
- More complex dynamics between user and system.
- Ability of the LLMs to perform multiple tasks and generalize well based on the massive training data.
- Use LLMs to simulate diverse behavior, intent, and query patterns.
- Help models learn to tackle complex queries and varied user needs effectively.

• See some example works that have tried this approach.

BASES: Web Search Simulation via LLM Agents

- User profile attributes:
 - Static
 - Dynamic
- Human and GPT-4 for user profile construction
 - Uniform attributes: gender
 - Random sampling
 - Non-uniform attributes: location
 - Sampling based on distribution
 - Unclear values: interest
 - Coarse-to-fine sampling

BASES: Web Search Simulation via LLM Agents

• Agents simulate multi-turn search sessions:

- Search
- \circ Click
- \circ Finish

5

- Preliminary results show that single prompt leads to bad results.
- Two prompting strategies:
 - Query Behavior Prompting
 - Keyword-based queries
 - Consider the information need and user profile
 - Click Behavior Prompting
 - Based on the top 10 results
 - Agents provide explanation why they decided to click on a page

BASES: Results and Findings

- 90% consistency with real user query/click patter
 - High realism
 - TREC-Session dataset
 - \circ $\;$ Compare query generation and rewriting behavior
 - \circ Top-1 clicks of agent vs. real user
- Users with similar profiles behave differently.
 - Personalization preserved
 - Similar profiles with little differences tested op
 - Differences in the behavior was observed

What if the behavior variations were the result of regeneration variation or random seed?

Jame information needs

BASES: Results and Findings

7

• BASES-trained BERT outperforms real-user-trained models.

- Model trained on simulated data vs. human-generated data.
- Tested on English and Chinese benchmarks:
 - English data generated with GPT-4 and human annotation.
 - Chinese data sampled from Baidu search logs.

Methods	#Session	Chinese Benchmark			
Methous	(#Click)	MRR	NDCG@1	NDCG@3	
BM25	-	45.16	27.20	41.39	
BERT (TREC-Session)	1,257	-	-	-	
BERT (AOL)	219,748	-	-	-	
BERT (Tiangong-ST)	143,155	43.28	22.59	38.91	
BERT (BASES)	1,000	<u>51.78</u>	35.56	47.98	
BERT (BASES)	10,000	53.52	35.98	50.72	

Wang et al., "An In-depth Investigation of User Response Simulation for Conversational Search", (WWW '24)

Simulation of Mixed-initiative Interactions

- LLM-based user simulation for mixed-initiative scenarios:
 - USi: based on GPT-2

8

- \circ ConvSim: based on GPT-3
- More diverse set of simulated user actions:
 - Provide explicit feedback
 - \circ Answer clarifying questions
 - Engage in a multi-turn information-seeking conversation

Owoicho et al., "Exploiting Simulated User Feedback for Conversational Search: Ranking, Rewriting, and Beyond", (SIGIR '23)

Owoicho et al., "Exploiting Simulated User Feedback for Conversational Search: Ranking, Rewriting, and Beyond", (SIGIR '23) 10

Owoicho et al., "Exploiting Simulated User Feedback for Conversational Search: Ranking, Rewriting, and Beyond", (SIGIR '23) 13

Owoicho et al., "Exploiting Simulated User Feedback for Conversational Search: Ranking, Rewriting, and Beyond", (SIGIR '23) 14

Owoicho et al., "Exploiting Simulated User Feedback for Conversational Search: Ranking, Rewriting, and Beyond", (SIGIR '23) 16

Owoicho et al., "Exploiting Simulated User Feedback for Conversational Search: Ranking, Rewriting, and Beyond", (SIGIR '23) 17

ConvSim: Performance

		ConvSim [44]	USi [61]	Ties	ConvSim [44]	Human	Ties
gle	Naturalness	$37\%^\dagger$	22%	41%	36%	25%	39%
1 ulti Single	Usefulness	$44\%^\dagger$	19%	37%	$36\%^\dagger$	20%	44%
ılti	Naturalness	$45\%^\dagger$	18%	37%	25%	28%	47%
$M\iota$	Usefulness	$62\%^\dagger$	12%	26%	26%	16%	58%

	Human	USi [61]	ConvSim [44]
Repeat	2%	0%	3%
Repeat/rephrase	4%	7%	6%
Repeat/simplify	4%	8%	5%
Clarify/refine	63%	37%	83%
Other	25%	40%	3%
Hallucination	2%	7%	0%

Sekulić et al., "Analysing Utterances in LLM-Based User Simulation for Conversational Search", (ACM TOIS'24) 19

Going Smaller with Finetuning

- Smaller finetuned LLMs can be better in simulation
- Task-oriented dialogues
- Domain awareness
- Finetuning Llama-2 13B
- Less hallucination
- Improved user intent alignment

Wang et al., "An In-depth Investigation of User Response Simulation for Conversational Search", (WWW '24) Sekulić et al., "Reliable LLM-based User Simulator for Task-Oriented Dialogue Systems", (SCI-CHAT 2024) 20

Finetuning for Feedback

• Finetuning T5 leads to a strong baseline

Dataset	Model	Generation Metrics				
Dataset	Widdel	BLEU-3	BLEU-4	ROUGE-L	METEOR	
1	GPT-2 (USi[47])	12.6	9.1	28.2	28.9	
Qulac	GPT-3.5 (ConvSim [33])	13.5	9.8	29.1	29.0	
	T5-small	23.7^{\dagger}	19.0 [†]	40.8^{\dagger}	43.2^{\dagger}	
2	GPT-2 (USi[47])	13.5	9.8	28.8	28.6	
ClariQ	GPT-3.5 (ConvSim [33])	13.4	9.7	28.9	28.4	
	T5-small	24.3^{\dagger}	19.5^{\dagger}	41.0^{\dagger}	43.3^{\dagger}	

Wang et al., "An In-depth Investigation of User Response Simulation for Conversational Search", (WWW '24) 21

Proactive Simulation

- User simulator reacts to the system's action
- An actual user would be more proactive:
 - Start a conversation
 - Steer the topic exploration by asking further questions
- Leverage LLMs to explore a given topic, as well as reacting to the system's response
- QuAC-like setup:
 - Student: knows very little about a topic and aims to learn more about it
 - Teacher: knows much more and provides response to the Student, based on a provided document
- Replace crowd workers of QuAC with LLMs

Abbasiantaeb et al., "Let the LLMs Talk: Simulating Human-to-Human Conversational QA via Zero-Shot LLM-to-LLM Interactions", (WSDM'24) Choi et al., "QuAC: Question Answering in Context", (EMNLP '18)

Abbasiantaeb et al., "Let the LLMs Talk: Simulating Human-to-Human Conversational QA via Zero-Shot LLM-to-LLM Interactions", (WSDM'24)

SimQuAC

- Simulated conversational question-answering dataset
- Compare with crowd-sourced dialogues of QuAC
 - More natural dialogue flow
 - \circ \quad More effective exploratory behavior: more subtopics are covered

Limitations of Simulation

- In-depth analysis of where simulation fails
- Misalignment
- Errors
- Noise
- Evaluation limitations
- Case study on Qulac and ClariQ

Limitations of Simulation

- In-depth analysis of where simulation fails
 - Different types of error discussed

i — "Find the homenage of the president of the United States"	Reasons	T5
i = "How do I register to take the SAT exam?"	Wrong answer type	33.9%
i = "I'm looking for websites that do antique appraisals" q = "Appraisals"	Cooperativeness mismatch	31.1%
i = "Find information on various types of computer memory,	Both valid	13.9%
and how they are different."	Extra information	10.3%
q = "Memory" cq = "Who was the first to study the brain and memory?"	Noisy reference	5.8%
G = "I want to know how different they are."	Miscellaneous	4.2%
H = "Herman Ebbinguaus."	Total # ROUGE<0.2	360

Wang et al., "An In-depth Investigation of User Response Simulation for Conversational Search", (WWW '24)

Creating Interaction Sandbox

- LLM-based agent
- Sandbox environment
- High similarity to human behavior
- Study two social phenomena:
 - \circ (i) information cocoons
 - (ii) user conformity behaviors.

Profile	ID	Name	Age	Gender	Career	Traits	Interest
Module	1	David	25	Male	Doctor	Caring	Action

Wang et al., "User Behavior Simulation with Large Language Model-based Agents", ACM TOIS, 2025

Information Cocoon

- Users only access information similar to their own preference, but los the opportunity to view more diverse options.
- Information cocoon is measured by entropy:

• Smaller E indicates more severe information cocoon

Nguyen et al., "Exploring the filter bubble: the effect of using recommender systems on content diversity", WWW '14 Paio et al., "Human–AI adaptive dynamics drives the emergence of information cocoons", Nature Machine Intelligence, 2023

Simulating Information Cocoons

- Simulate information cocoon and propose solutions for it.
- Recommender systems:
 - 50 agents freely interact with items, leading to an agent-item matrix.
 - Recommender systems trained at each round of interaction for 50 times.
 - Information cocoon is measured by entropy.

Round-Based Simulation with Pareto-Distributed Agent Actions

Wang et al., "User Behavior Simulation with Large Language Model-based Agents", ACM TOIS, 2025

Implications

- How can LLM-based simulation be used to improve query understanding?
- LLMs to be used to generate query variations literature has shown the potential
- Simulation can be informed by the current human variation studies
- Create sandbox environment
- Enrich existing datasets
- Incorporate query variations in the existing simulators

Questions