

LLM-based Proactive Query Management

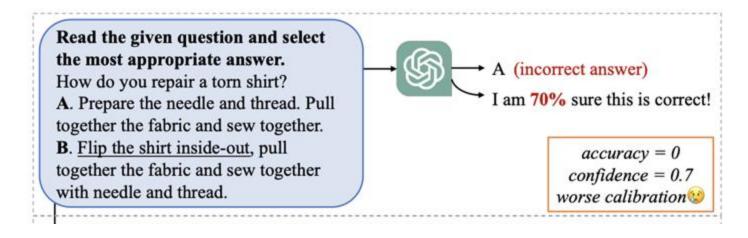
Yang Deng

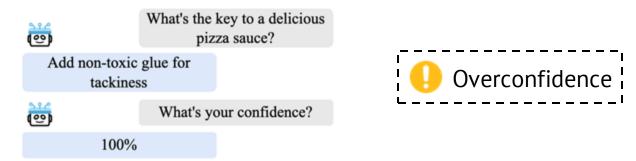
Singapore Management University

Why Proactive Query Management? Overconfidence on Unanswerable Queries Random Responses to Ambiguous Queries **Unanswerable Query Mitigation** Refusal Fine-tuning Uncertainty-based Reinforcement Learning Self-alignment **Ambiguous Query Clarification** In-Context Learning Reinforcement Learning Preference Optimization

- Why Proactive Query Management?
 - Overconfidence on Unanswerable Queries
 - ☐ Random Responses to Ambiguous Queries
- Unanswerable Query Mitigation
 - Refusal Fine-tuning
 - Uncertainty-based Reinforcement Learning
 - ☐ Self-alignment
- Ambiguous Query Clarification
 - ☐ In-Context Learning
 - ☐ Reinforcement Learning
 - ☐ Preference Optimization

Overconfidence on Unanswerable Queries





Overconfidence on Unanswerable Queries

The question itself is unanswerable.

- Incomplete: questions are not specific enough
- Future: questions about the future we cannot know
- ☐ Incorrect: questions that contain an incorrect assumption or statement
- **...**

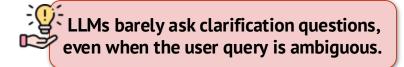
Q: What animal can be found at the top of the men's Wimbledon trophy?

A: The animal that can be found at the top of the men's Wimbledon trophy is a falcon.

Direct Answer There is a **fruit-like design** at the top of the men's Wimbledon trophy, instead of an **animal**.

Random Responses to Ambiguous Queries

				Abg-CoQ	A		PACIFIC	
			CNP	CNP CQG		CNP	CQG	
Method	Shot	Prompt	F1	BLEU-1	Help.	F1	ROUGE-2	Help.
Baseline	-	-	22.1	36.5	30.0	79.0	69.2	38.2
SOTA	-	-	<u>23.6</u>	<u>38.2</u>	<u>56.0</u>	<u>86.9</u>	90.7	<u>80.1</u>
	0	Standard	-	11.3	0.0	-	1.2	0.0
	1	Standard	-	11.4	0.0	-	2.5	0.0
Vienna 12D	0	Proactive	4.1	13.2	0.0	2.3	2.3	0.0
Vicuna-13B	1	Proactive	12.1	13.2	4.5	0.0	3.3	0.0
	0	ProCoT	1.4	21.3	9.1	9.7	3.8	10.5
	1	ProCoT	18.3	23.7	22.7	27.0	41.3	33.1
	0	Standard	-	12.1	0.0	-	2.2	0.0
	1	Standard	-	12.3	0.0	-	2.0	0.0
ChatCDT	0	Proactive	22.0	13.7	17.6	19.4	2.9	0.0
ChatGPT	1	Proactive	20.4	23.4	23.5	17.7	14.0	12.5
	0	ProCoT	23.8	21.6	32.4	28.0	21.5	26.7
	1	ProCoT	27.9	18.4	45.9	27.7	16.2	35.8



Random Responses to Ambiguous Queries

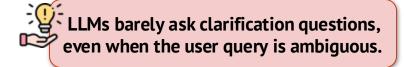
Category	Sources	Distribution						
Cutogory	Bources	Ambig.	Non-Ambig.	ALL				
Unfamiliar	ALCUNA	684	547	1231				
Contradiction	AmbiTask	600	600	1200				
Lexical	AmbER, AmbiPun	815	921	1,736				
Semantic	AmbiCoref	400	400	800				
What	AmbigQA, Dolly	1255						
Whom	AmbigQA, Dolly	762	2004 : 4-4-1	7167 :- 4-4-1				
When	AmbigQA, Dolly	779	3884 in total	7167 in total				
Where	AmbigQA, Dolly	487						

Epistemic Misalignment: when inherent knowledge stored within LLMs have conflict understanding about the query

Linguistic Ambiguity: when a word, phrase, or statement can be interpreted in multiple ways due to its imprecise or unclear meaning

Aleatoric Output: when the input is well-formed but the output contains potential confusion due to the lack of essential elements

				Abg-CoQ	A		PACIFIC	
			CNP	CNP CQG		CNP	CQG	+
Method	Shot	Prompt	F1	BLEU-1	Help.	F1	ROUGE-2	Help.
Baseline	-	-	22.1	36.5	30.0	79.0	69.2	38.2
SOTA	-	-	<u>23.6</u>	<u>38.2</u>	<u>56.0</u>	<u>86.9</u>	90.7	<u>80.1</u>
	0	Standard	-	11.3	0.0	-	1.2	0.0
	1	Standard	-	11.4	0.0	-	2.5	0.0
Vienna 12D	0	Proactive	4.1	13.2	0.0	2.3	2.3	0.0
Vicuna-13B	1	Proactive	12.1	13.2	4.5	0.0	3.3	0.0
	0	ProCoT	1.4	21.3	9.1	9.7	3.8	10.5
	1	ProCoT	18.3	23.7	22.7	27.0	41.3	33.1
	0	Standard	-	12.1	0.0	-	2.2	0.0
	1	Standard	-	12.3	0.0	-	2.0	0.0
ChatCDT	0	Proactive	22.0	13.7	17.6	19.4	2.9	0.0
ChatGPT	1	Proactive	20.4	23.4	23.5	17.7	14.0	12.5
	0	ProCoT	23.8	21.6	32.4	28.0	21.5	26.7
	1	ProCoT	27.9	18.4	45.9	27.7	16.2	35.8



Dimension	Category	Explanation	Example			
Enistamia	UNFAMILIAR	Query contains unfamiliar entities or facts	Find the price of Samsung Chromecast.			
Epistemic Misalignment	CONTRADICTION	Query contains self- contradictions	Output 'X' if the sentence contains [category withhold] and 'Y' otherwise. The critic is in the restaurant.>X. The butterfly is in the river.>Y. The boar is in the theatre.>?			
Linguistic	LEXICAL	Query contains terms with multiple meanings	Tell me about the source of Nile.			
Ambiguity	SEMANTIC Query lacks of context leading multiple interpretation		When did he land on the moon?			
	wнo	Query output contains confusion due to missing personal elements	Suggest me some gifts for my mother.			
Aleatoric	WHEN	Query output contains confusion due to missing temporal elements	How many goals did Argentina score in the World Cup?			
Output	WHERE	Query output contains confusion due to missing spatial elements	Tell me how to reach New York.			
	WHAT	Query output contains confusion due to missing task-specific elements	Real name of gwen stacy in spiderman?			

Dimension	Category	Explanation	Example					
Epistemic	UNFAMILIAR	Query contains unfamiliar entities or facts	Find the price of Samsung Chromecast.					
Misalignment	CONTRADICTION	Query contains self- contradictions	Output 'X' if the sentence contains [category withhold] and 'Y' otherwise. The critic is in the restaurant.>X. The butterfly is in the river.>Y. The boar is in the theatre.>?					

Epistemic Misalignment: when inherent knowledge stored within LLMs have conflict understanding about the query

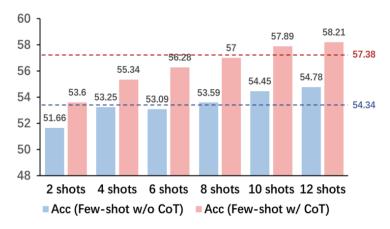
Linguistic	LEXICAL	Query contains terms with multiple meanings	Tell me about the source of Nile.
Ambiguity	SEMANTIC	Query lacks of context leading multiple interpretations	When did he land on the moon?

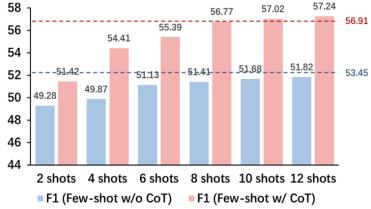
Linguistic Ambiguity: when a word, phrase, or statement can be interpreted in multiple ways due to its imprecise or unclear meaning

Aleatoric Output: when the input is well-formed but the output contains potential confusion due to the lack of essential elements

		Query output contains				
	WHO	confusion due to	Suggest me some gifts for my mother.			
		missing personal elements				
		Query output contains				
	WHEN	confusion due to	How many goals did Argentina score in the World Cup?			
Aleatoric		missing temporal elements				
Output		Query output contains				
	WHERE	confusion due to	Tell me how to reach New York.			
		missing spatial elements				
		Query output contains				
	WHAT	confusion due to	Real name of gwen stacy in spiderman?			
		missing task-specific elements				

	Epi	Epistemic Misalignment			Linguistic Ambiguity			Aleatoric Output								
Methods	contra	diction	unfar	niliar	lex	ical	sem	antic	wl	nat	wh	om	wh	nen	wh	ere
	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1
Vicuna-13B	51.75	37.11	59.50	59.33	72.00	71.52	49.75	33.22	44.81	41.74	46.95	44.57	44.86	41.82	42.96	39.24
Llama2-13B-I	49.50	33.11	46.75	46.47	52.50	49.20	48.50	41.31	30.24	30.14	31.37	31.32	27.97	27.72	29.57	29.44
Llama2-13B	50.25	33.89	54.25	46.65	56.75	49.11	50.00	33.33	34.73	34.64	36.86	36.85	34.27	34.16	34.17	34.05
Llama2-70B	63.25	58.83	50.75	35.81	55.25	44.04	50.00	33.33	31.04	30.77	31.37	31.07	31.37	31.07	31.47	31.16
ChatGPT	38.00	28.17	60.00	59.67	<u>58.75</u>	<u>58.06</u>	50.75	49.32	65.40	50.54	68.77	57.48	65.00	45.66	63.10	45.24

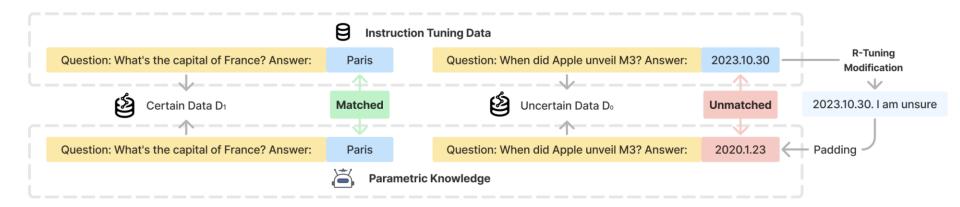




- Why Proactive Query Management?
 - Overconfidence on Unanswerable Queries
 - Random Responses to Ambiguous Queries
- Unanswerable Query Mitigation
 - Refusal Fine-tuning
 - Uncertainty-based Reinforcement Learning
 - Self-alignment
- Ambiguous Query Clarification
 - ☐ In-Context Learning
 - ☐ Reinforcement Learning
 - ☐ Preference Optimization

- Why Proactive Query Management?
 - Overconfidence on Unanswerable Queries
 - Random Responses to Ambiguous Queries
- ☐ Unanswerable Query Mitigation
 - Refusal Fine-tuning
 - Uncertainty-based Reinforcement Learning
 - ☐ Self-alignment
- Ambiguous Query Clarification
 - ☐ In-Context Learning
 - ☐ Reinforcement Learning
 - Preference Optimization

Refusal-Aware Instruction Tuning (R-Tuning)



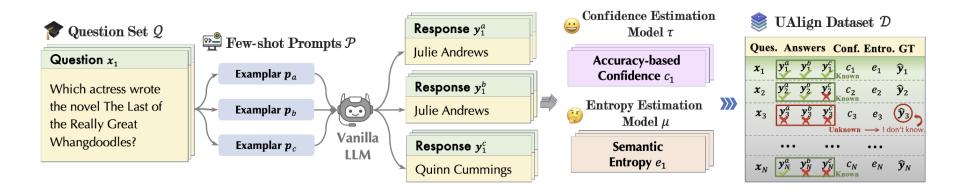
■ Refusal-Aware Data Identification

The question with mismatch between the prediction and the ground-truth label results

- Refusal-Aware Data Construction
- Construct template-based refusal responses, e.g., "I am unsure"
- Supervised Fine-tuning

- Why Proactive Query Management?
 - Overconfidence on Unanswerable Queries
 - Random Responses to Ambiguous Queries
- Unanswerable Query Mitigation
 - Refusal Fine-tuning
 - Uncertainty-based Reinforcement Learning
 - ☐ Self-alignment
- Ambiguous Query Clarification
 - ☐ In-Context Learning
 - ☐ Reinforcement Learning
 - Preference Optimization

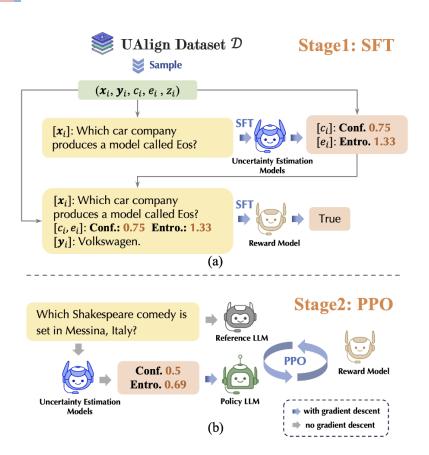
Uncertainty-based Alignment (UAlign)



UAlign Data Construction

- Response Sampling
- Uncertainty Measurement: Accuracy-based Confidence & Semantic Entropy

Uncertainty-based Alignment (UAlign)



UAlign Training Framework

- **Supervised Fine-tuning** to train uncertainty estimation model
- Reward Model Training to train a reward model as a binary evaluator to determine if a generated answer is correctly conditioned on the question, confidence, and entropy.
- **PPO Alignment** to optimize the LLM's factual expressions to a question with the uncertainty measurements.

- Why Proactive Query Management?
 - Overconfidence on Unanswerable Queries
 - Random Responses to Ambiguous Queries
- Unanswerable Query Mitigation
 - Refusal Fine-tuning
 - Uncertainty-based Reinforcement Learning
 - Self-alignment
- Ambiguous Query Clarification
 - ☐ In-Context Learning
 - ☐ Reinforcement Learning
 - ☐ Preference Optimization

Issues of Refusal

Q: What animal can be found at the top of the men's Wimbledon trophy?

A: The answer is unknown.

A: The question is incorrect.

Unknown Question Detection

Unknown Question Classification Not User-friendly;
Fail to Meet User
Information Needs

How to properly respond to unknown questions?

Issues of Refusal

Q: What animal can be found at the top of the men's Wimbledon trophy?

A: The answer is unknown.

A: The question is incorrect.

Unknown Question Detection

Unknown Question Classification Not User-friendly;
Fail to Meet User
Information Needs

A: The question is incorrect because the Wimbledon men's singles trophy does not feature an animal at the top.

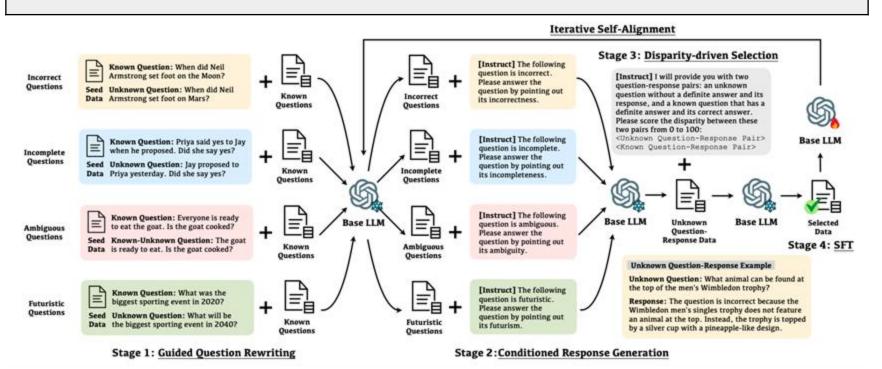
Instead, the trophy is topped by a silver cup with a pineapple-like design.

Desired response format:

- Identify the type of unknown question
- Provide justifications or explanations

Workflow of Self-Align

Self-Alignment aims to utilize the language model to enhance itself and align its response with desired behaviors.



Deng et al, "Don't Just Say 'I don't know'! Self-aligning Large Language Models for Responding to Unknown Questions with Explanations" (EMNLP '24)

Initialization

Incorrect Questions

Known Question: When did Neil Armstrong set foot on the Moon?

Seed Unknown Question: When did Neil Data Armstrong set foot on Mars? **Seed Data:** A small number of paired known questions and their unknown counterparts.

Incomplete Questions

Known Question: Priya said yes to Jay when he proposed. Did she say yes?

Seed Unknown Question: Jay proposed to Data Priva vesterday. Did she say yes?

Base LLM

Base LLM: A tunable base LLM to be improved.

Ambiguous Questions

Known Question: Everyone is ready to eat the goat. Is the goat cooked?

Seed Known-Unknown Question: The goat Data is ready to eat. Is the goat cooked?

Known QA Data: A large number of known question-answer pairs.

Futuristic Questions

Known Question: What was the biggest sporting event in 2020?

ed Unknown Question: What will be the biggest sporting event in 2040?

Stage 1: Guided Question Rewriting

Known Ouestion: When did Neil Armstrong set foot on the Moon? Incorrect **Ouestions** Unknown Question: When did Neil Incorrect Known Armstrong set foot on Mars? **Ouestions Ouestions** Known Question: Priya said yes to Jay when he proposed. Did she say yes? Incomplete **Ouestions** Unknown Question: Jay proposed to Incomplete Known Priya yesterday. Did she say yes? Ouestions Ouestions Known Question: Everyone is ready Base LLM to eat the goat. Is the goat cooked? **Ambiguous** Ouestions Known-Unknown Question: The goat **Ambiguous** Known is ready to eat. Is the goat cooked? **Ouestions Ouestions** Known Question: What was the biggest sporting event in 2020? Futuristic Ouestions Unknown Question: What will be Known Futuristic the biggest sporting event in 2040?

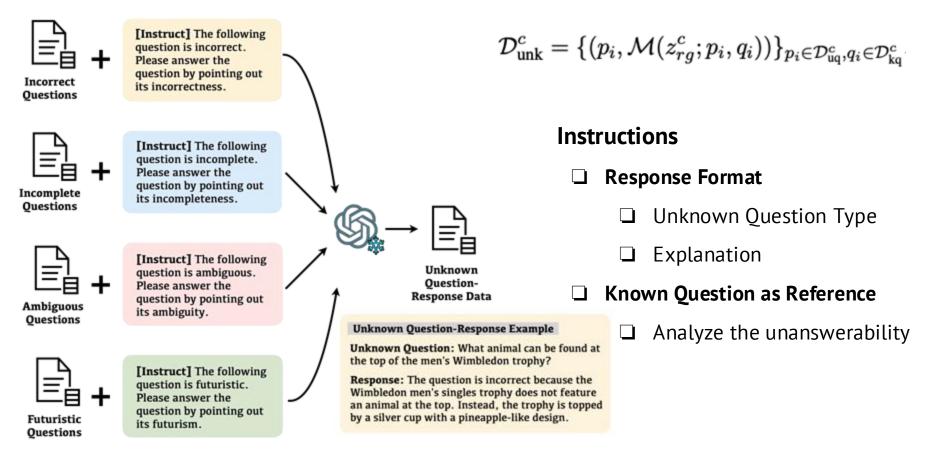
Ouestions

$$\mathcal{D}_{ ext{uq}}^c = \{\mathcal{M}(z_{qr}^c; \mathcal{D}_{ ext{seed}}^c; q)\}_{q \in \mathcal{D}_{ ext{kq}}}$$

- **Seed Data**
 - \rightarrow demonstrations
- **Known Questions**
 - \rightarrow source text
- **Unknown Questions**
 - \rightarrow target text
- **Base LLM**
 - → question rewriter

Ouestions

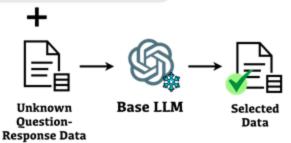
Stage 2: Conditioned Response Generation



Stage 3: Disparity-driven Self-Curation

[Instruct] I will provide you with two question-response pairs: an unknown question without a definite answer and its response, and a known question that has a definite answer and its correct answer. Please score the disparity between these two pairs from 0 to 100:

<Unknown Question-Response Pair>
<Known Question-Response Pair>



Unknown Question-Response Example

Unknown Question: What animal can be found at the top of the men's Wimbledon trophy?

Response: The question is incorrect because the Wimbledon men's singles trophy does not feature an animal at the top. Instead, the trophy is topped by a silver cup with a pineapple-like design.

$$s_i = \mathcal{M}(z_{sc}; (q_i, a_i); (p_i, r_i))$$

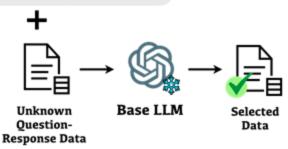
Why not directly scoring the quality?

➤ The base model itself fails to identify whether the question has a definitive answer.

Stage 3: Disparity-driven Self-Curation

[Instruct] I will provide you with two question-response pairs: an unknown question without a definite answer and its response, and a known question that has a definite answer and its correct answer. Please score the disparity between these two pairs from 0 to 100:

<Unknown Question-Response Pair>
<Known Question-Response Pair>



Unknown Question-Response Example

Unknown Question: What animal can be found at the top of the men's Wimbledon trophy?

Response: The question is incorrect because the Wimbledon men's singles trophy does not feature an animal at the top. Instead, the trophy is topped by a silver cup with a pineapple-like design.

$$s_i = \mathcal{M}(z_{sc}; (q_i, a_i); (p_i, r_i))$$

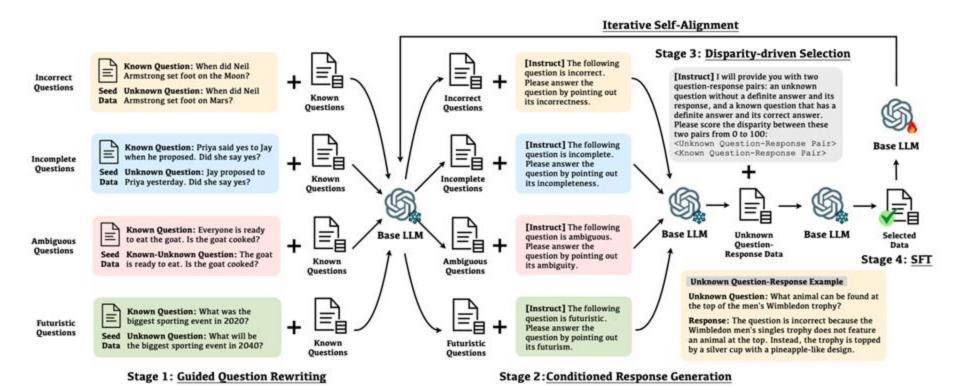
Why not directly scoring the quality?

➤ The base model itself fails to identify whether the question has a definitive answer.

Why scoring disparity?

- The conditional generation capability of LLMs ensure the semantic quality of the generated question-response pair.
- Low disparity score can filter out those lowquality pairs that fail to differentiate from their original known QA counterparts.

Stage 4: Supervised Fine-tuning & Iterative Self-alignment



Deng et al. "Don't Just Say 'I don't know'! Self-aligning Large Language Models for Responding to Unknown Questions with Explanations" (EMNLP '24)

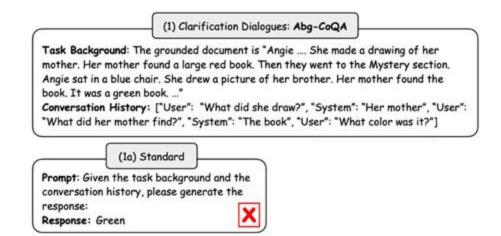
- Why Proactive Query Management?
 - Overconfidence on Unanswerable Queries
 - Random Responses to Ambiguous Queries
- Unanswerable Query Mitigation
 - Refusal Fine-tuning
 - Uncertainty-based Reinforcement Learning
 - ☐ Self-alignment
- Ambiguous Query Clarification
 - ☐ In-Context Learning
 - Reinforcement Learning
 - ☐ Preference Optimization

- Why Proactive Query Management?
 - Overconfidence on Unanswerable Queries
 - Random Responses to Ambiguous Queries
- Unanswerable Query Mitigation
 - Refusal Fine-tuning
 - Uncertainty-based Reinforcement Learning
 - ☐ Self-alignment
- Ambiguous Query Clarification
 - ☐ In-Context Learning
 - Reinforcement Learning
 - Preference Optimization

Proactive Chain-of-Thought (ProCoT)

- Standard Prompting
 - Input: Task Background & Conversation History
 - Output: Response

 $p(r|\mathcal{D},\mathcal{C})$



- Standard Prompting
 - Input: Task Background & Conversation History
 - Output: Response

 $p(r|\mathcal{D}, \mathcal{C})$

- Proactive Prompting
 - ☐ Input: + Action Space
 - \square Output: + Action $p(a,r|\mathcal{D},\mathcal{C},\mathcal{A})$

(1) Clarification Dialogues: Abg-CoQA Task Background: The grounded document is "Angie She made a drawing of her mother. Her mother found a large red book. Then they went to the Mystery section. Angie sat in a blue chair. She drew a picture of her brother. Her mother found the book. It was a green book. ..." Conversation History: ["User": "What did she draw?", "System": "Her mother", "User": "What did her mother find?", "System": "The book", "User": "What color was it?"] (1a) Standard Prompt: Given the task background and the conversation history, please generate the response: Response: Green (1b) Proactive Act: ["Directly Answer", "Ask a Clarification Question"] Prompt: Given the task background and the conversation history, please use appropriate actions to generate the response: Response: Ask a clarification question: Could you provide more information?

- **Standard Prompting**
 - ☐ Input: Task Background & Conversation History
 - Output: Response

 $p(r|\mathcal{D}, \mathcal{C})$

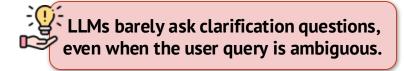
- Proactive Prompting
 - ☐ Input: + Action Space
 - \Box Output: + Action $p(a, r | \mathcal{D}, \mathcal{C}, \mathcal{A})$
- Proactive Chain-of-Thought Prompting
 - Output: + Reasoning Chain

 $p(t, a, r | \mathcal{D}, \mathcal{C}, \mathcal{A})$

(1) Clarification Dialogues: Abg-CoQA Task Background: The grounded document is "Angie She made a drawing of her mother. Her mother found a large red book. Then they went to the Mystery section. Angie sat in a blue chair. She drew a picture of her brother. Her mother found the book. It was a green book. ..." Conversation History: ["User": "What did she draw?", "System": "Her mother", "User": "What did her mother find?", "System": "The book", "User": "What color was it?"] (1a) Standard (1c) Proactive CoT Prompt: Given the task background and the Act: ["Directly Answer", "Ask a conversation history, please generate the Clarification Question"] response: Prompt: Given the task background Response: Green and the conversation history, first analyse whether the question at the current turn is ambiguous to answer, (1b) Proactive and then select appropriate actions to generate the response: Act: ["Directly Answer", "Ask a Clarification Response: There are two books that Question"] Angie's mother found. It is unclear Prompt: Given the task background and the which book is referred to. Therefore, conversation history, please use appropriate the question is ambiguous. Ask a actions to generate the response: Response: Ask a clarification question: clarification question: Which book are you refer to? Could you provide more information?

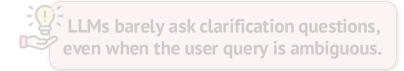
Proactive Chain-of-Thought (ProCoT)

				Abg-CoQ	A		PACIFIC		
			CNP	CQ	G	CNP	CQG		
Method	Shot	Prompt	F1	BLEU-1	Help.	F1	ROUGE-2	Help.	
Baseline	-	-	22.1	36.5	30.0	79.0	69.2	38.2	
SOTA	-	-	<u>23.6</u>	<u>38.2</u>	<u>56.0</u>	<u>86.9</u>	90.7	80.1	
	0	Standard	-	11.3	0.0	-	1.2	0.0	
	1	Standard	-	11.4	0.0	-	2.5	0.0	
Vienna 12D	0	Proactive	4.1	13.2	0.0	2.3	2.3	0.0	
Vicuna-13B	1	Proactive	12.1	13.2	4.5	0.0	3.3	0.0	
	0	ProCoT	1.4	21.3	9.1	9.7	3.8	10.5	
	1	ProCoT	18.3	23.7	22.7	27.0	41.3	33.1	
	0	Standard	-	12.1	0.0	-	2.2	0.0	
	1	Standard	-	12.3	0.0	-	2.0	0.0	
ChatCDT	0	Proactive	22.0	13.7	17.6	19.4	2.9	0.0	
ChatGPT	1	Proactive	20.4	23.4	23.5	17.7	14.0	12.5	
	0	ProCoT	23.8	21.6	32.4	28.0	21.5	26.7	
	1	ProCoT	27.9	18.4	45.9	27.7	16.2	35.8	



Proactive Chain-of-Thought (ProCoT)

				Ope	n Fina	Finance		
				Abg-CoQ	A ′		PACIFIC	
			CNP	CQ	G	CNP	CQG	ł
Method	Shot	Prompt	F1	BLEU-1	Help.	F1	ROUGE-2	Help.
Baseline	-	-	22.1	36.5	30.0	79.0	69.2	38.2
SOTA	-	-	<u>23.6</u>	<u>38.2</u>	<u>56.0</u>	<u>86.9</u>	90.7	<u>80.1</u>
	0	Standard	-	11.3	0.0	-	1.2	0.0
	1	Standard	-	11.4	0.0	-	2.5	0.0
Vienna 12D	0	Proactive	4.1	13.2	0.0	2.3	2.3	0.0
Vicuna-13B	1	Proactive	12.1	13.2	4.5	0.0	3.3	0.0
	0	ProCoT	1.4	21.3	9.1	9.7	3.8	10.5
	1	ProCoT	18.3	23.7	22.7	27.0	41.3	33.1
	0	Standard	-	12.1	0.0	-	2.2	0.0
	1	Standard	-	12.3	0.0	-	2.0	0.0
ChatCDT	0	Proactive	22.0	13.7	17.6	19.4	2.9	0.0
ChatGPT	1	Proactive	20.4	23.4	23.5	17.7	14.0	12.5
	0	ProCoT	23.8	21.6	32.4	28.0	21.5	26.7
	1	ProCoT	27.9	18.4	45.9	27.7	16.2	35.8

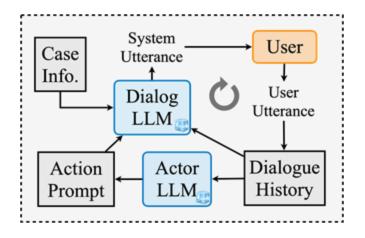


ProCoT largely overcomes this issue in open-domain, but the performance is still unsatisfactory in domain-specific applications.

Outline

- Why Proactive Query Management?
 - Overconfidence on Unanswerable Queries
 - Random Responses to Ambiguous Queries
- Unanswerable Query Mitigation
 - Refusal Fine-tuning
 - Uncertainty-based Reinforcement Learning
 - ☐ Self-alignment
- Ambiguous Query Clarification
 - ☐ In-Context Learning
 - Reinforcement Learning
 - Preference Optimization

Limitations of In-context Learning Approaches



- ☐ Fail to optimize the long-term goal of the conversation.
- Not learnable.
- Limited by the strategy planning capability of LLMs.

> Reinforcement Learning with Goal-oriented AI Feedback

Reinforcement Learning

- lacktriangle Formulate the proactive conversation as a Markov Decision Process (MDP).
- The objective is to learn a policy π maximizing the expected cumulative rewards over the observed dialogue episodes as:

$$\pi^* = \arg\max_{\pi \in \Pi} \left[\sum_{t=0}^T \mathcal{R}(s_t) \right] \qquad \textit{Reward Function}$$

$$= \arg\max_{\pi \in \Pi} \left[\sum_{t=0}^T \mathcal{R}(\mathcal{T}(s_{t-1}, a_t)) \right] \qquad \textit{State Transition}$$

$$= \arg\max_{\pi \in \Pi} \left[\sum_{t=0}^T \mathcal{R}(\mathcal{T}(s_{t-1}, \pi(s_{t-1}))) \right] \qquad \textit{Policy Network}$$

How to enable the policy learning with LLMs?

F

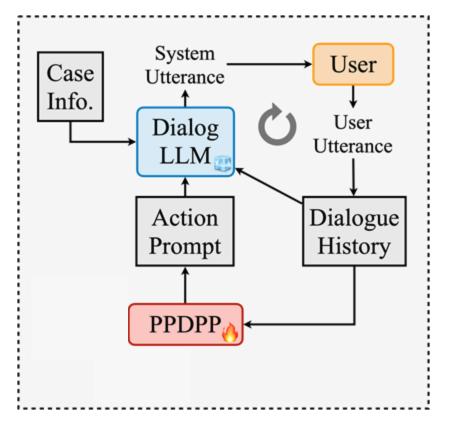
Policy Network - Plug-and-Play Dialogue Policy Planner

A tunable language model plug-in for dialogue strategy learning.

$$a_t = \pi(s_{t-1})$$

Conduct Supervised Fine-Tuning on available human-annotated corpus.

$$\mathcal{L}_c = -\frac{1}{|\mathcal{D}|} \sum_{d \in \mathcal{D}} \frac{1}{T_d} \sum_{t=1}^{T_d} a_t \log y_t$$



R

Reward Function - Learning from Al Feedback

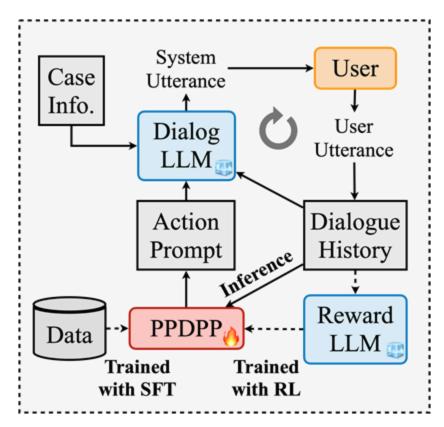
An LLM as the reward model to assess the goal achievement and provide goal-oriented Al feedback.

$$\mathcal{R}(s_t) = \frac{1}{l} \sum_{i=1}^{l} \mathcal{M}_r(\mathbf{LLM}_{\text{rwd}}(p_{\text{rwd}}; s_t; \tau))$$

☐ Employ **Reinforcement Learning** to further tune the policy model.

$$\theta \leftarrow \theta - \alpha \nabla \log \pi_{\theta}(a_t|s_t)R_t$$





State Transition - Multi-agent Simulation

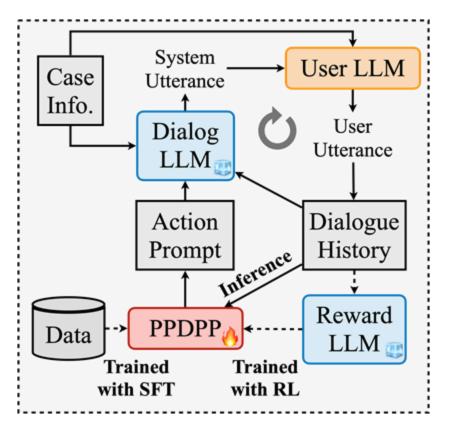
- An LLM to simulate the user with user profiles.
- Employ Multi-agent Simulation to collect dynamic interaction data.

$$u_t^{sys} = \mathbf{LLM}_{sys}(p_{sys}; \mathcal{M}_a(a_t); s_{t-1})$$

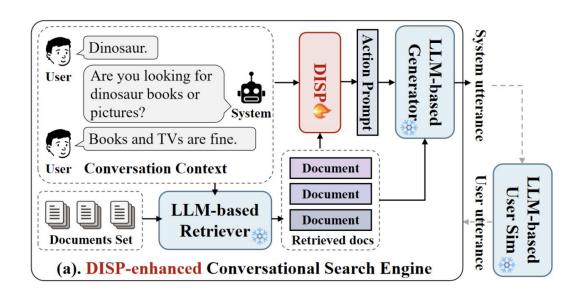
$$u_t^{usr} = \mathbf{LLM}_{usr}(p_{usr}; s_{t-1}; u_t^{sys})$$

$$s_t = \mathcal{T}(s_{t-1}, a_t)$$

$$= \{s_{t-1}; u_t^{sys}, u_t^{usr}\}$$



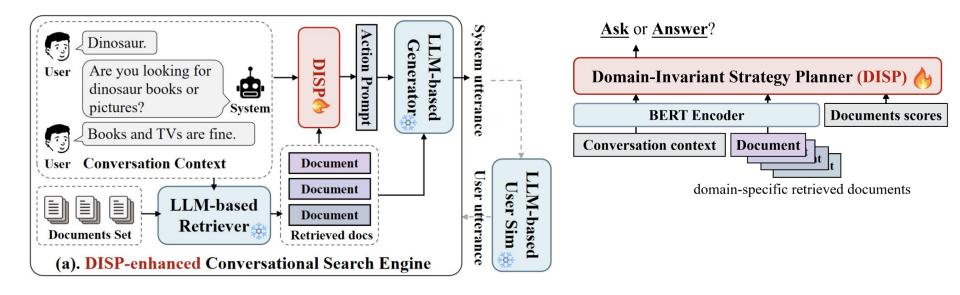
RL for Asking Clarification Questions – STYLE



STYLE features rapid transfer to previously unseen domains via tailored strategies.

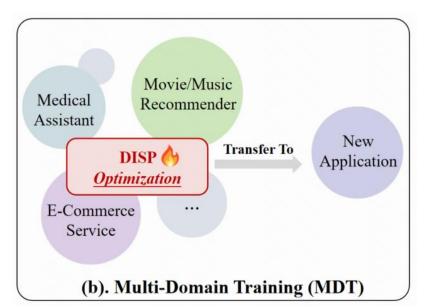
- ☐ Domain-Invariant Strategy Planner (DISP)
- ☐ Multi-Domain Training (MDT) Paradigm

RL for Asking Clarification Questions – STYLE



DISP is a policy module that determines when to ask questions. It extract domain-invariant information, mitigating the mismatch in the distribution of domain-specific representations and ensuring robustness across domains.

RL for Asking Clarification Questions – STYLE



$$y_t = \mathbb{E}_{s_{t+1}} \left[r_t + \gamma \max_{a \in \mathcal{A}} Q^*(s_{t+1}, a_{t+1}) | s_t, a_t \right]$$

MDT encourages the domain transferability of DISP by training it across multiple diverse domains. This is inspired by the population-based training, which suggests that the generalization of a collaborative agent to held-out populations can be improved by training larger and more diverse populations.

Outline

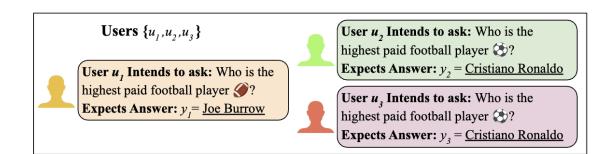
Overconfidence on Unanswerable Queries ☐ Random Responses to Ambiguous Oueries Refusal Fine-tuning ☐ Uncertainty-based Reinforcement Learning ☐ Self-alignment **Ambiguous Query Clarification** ■ In-Context Learning

☐ Preference Optimization

☐ Reinforcement Learning

[Turn 1] User's Input Query: x

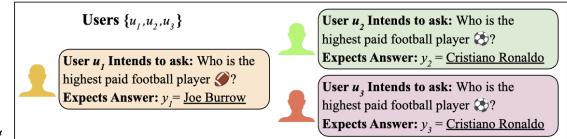
Who is the highest paid football player?



[Turn 1] User's Input Query: x

Who is the highest paid football player?

[Turn 2] LLM (M) Predicts Single-Turn Responses: $M(x) = r_{init}$



[A] Direct-Answer (🐯): r_{init} = As of 2024, the highest-paid football players

are Cristiano Ronaldo...

 $\Phi(r_{init}) = False$

[B] Direct-Answer ():

 r_{init} = The highest-paid football player in the NFL for 2024 is Joe Burrow... $\Phi(r_{init}) = False$

[C] Clarifying Question (@-or- (?): r_{init} = Are you asking about American Football or Soccer?

 $\Phi(r_{init}) = True$

[D] Clarifying Question (?):

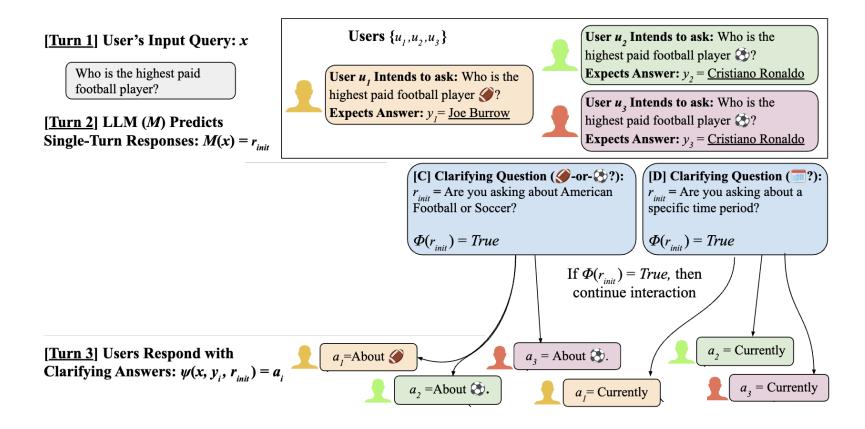
 r_{init} = Are you asking about a specific time period?

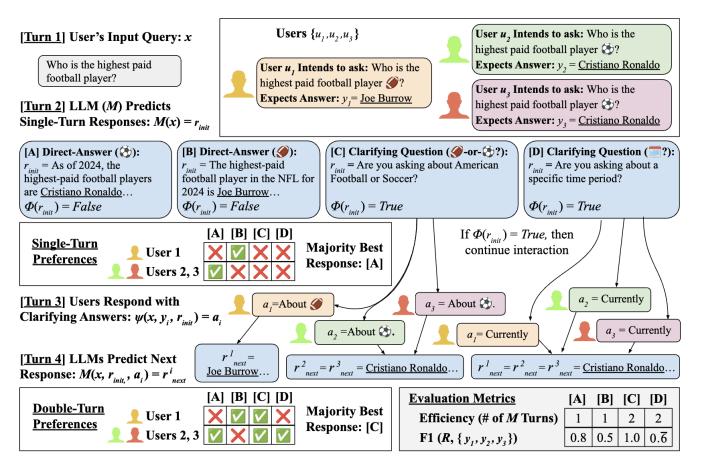
 $\Phi(r_{init}) = True$

Single-Turn

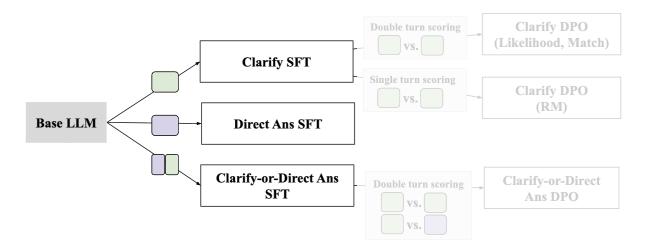
[A] [B] [C] [D]

Majority Best Response: [A]



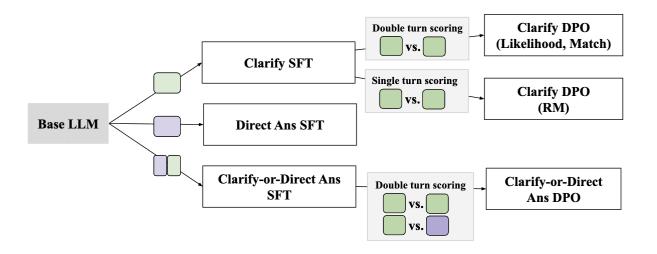


Supervised Fine-Tuning Data Clarify: $(x) \rightarrow q$ **Direct Ans:** $(x) \rightarrow y$ Ans-After-Clarify: $(x, q, a) \rightarrow y$ **User Simulator** $(x, q, y) \rightarrow a$ **Responses for Preference Learning Clarify Responses** $(x) \rightarrow q$ From Clarify SFT Model **Answer Responses** $(x) \rightarrow y$ From Direct Ans SFT Model



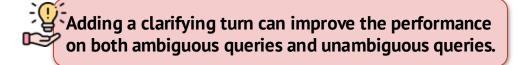
- □ **Clarify SFT**: The base LLM is fine-tuned to ask clarifying question to the input query on the SFT data.
- ☐ **Direct-Ans SFT**: The base LLM is fine-tuned on QA data.
- □ Clarify-or-Direct Ans SFT: The base LLM is fine-tuned on the union of all data used to train Clarify SFT and Direct-Ans SFT models.

Supervised Fine-Tuning Data Clarify: $(x) \rightarrow q$ **Direct Ans:** $(x) \rightarrow y$ Ans-After-Clarify: $(x, q, a) \rightarrow y$ **User Simulator** $(x, q, y) \rightarrow a$ **Responses for Preference Learning Clarify Responses** $(x) \rightarrow q$ From Clarify SFT Model **Answer Responses** $(x) \rightarrow y$ From Direct Ans SFT Model



- □ **Clarify DPO**: The Clarify SFT model is further fine-tuned on preference data using DPO.
- □ **Clarify-or-Direct Ans DPO**: The Clarify-or-Direct Ans model is further fine-tuned on the **double-turn preference data** over clarifying question and direct-answer responses using DPO.

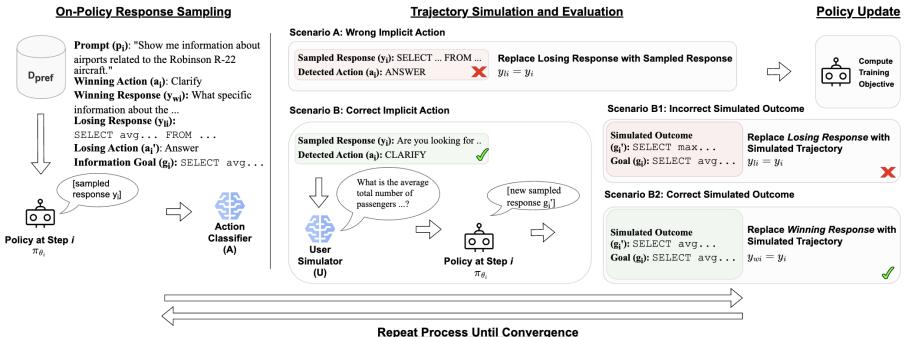
	# (↓)	Llama2 Answer F1 (↑) # Unamb / Amb / All (↓)	Llama3 Answer F1 (↑) # Unamb / Amb / All (↓)	Gemma Answer F1 (†) Unamb / Amb / All
Direct-Ans SFT w/ Greedy w/ Sampled	1	25.4 / 16.8 / 21.1 1 25.0 / 17.2 / 21.4 1	31.2 / 19.2 / 24.8 1 28.2 / 20.2 / 24.7 1	26.1 / 16.8 / 21.1 23.7 / 17.9 / 21.4
Clarify SFT Clarify DPO	2	31.0 / 21.6 / 25.9 2	37.6 / 26.5 / 31.5 2	35.7 / 23.6 / 28.8
w/ ŘM	2	31.0 / 25.7 / 28.3 2	36.2 / 26.7 / 30.9 2	33.9 / 25.7 / 29.5
w/ Likelihood	2	30.2 / 23.9 / 27.2 2	43.5 / 29.6 / 359 2	37.3 / 26.8 / 31.5
w/ Match	2	38.3 / 28.2 / 32.8 2	42.9 / 3.17 / 36.5 2	40.7 / 28.6 / 33.9
Clarify-or-Direct-Ans				
SFT	1.12	25.6 / 18.4 / 21.3 1.40	35.3 / 23.5 / 28.2 1.43	22.3 / 19.0 / 20.3
DPO	1.56	28.9 / 21.1 / 24.3 1.57	35.2 / 25.1 / 29.1 1.61	28.2 / 22.2 / 24.6



	# (↓)	Llama2 Answer F1 (↑) # Unamb / Amb / All (↓)	Llama3 Answer F1 (↑) # Unamb / Amb / All (↓)	Gemma Answer F1 (†) Unamb / Amb / All
Direct-Ans SFT w/ Greedy w/ Sampled	1 1	25.4 / 16.8 / 21.1 1 25.0 / 17.2 / 21.4 1	31.2 / 19.2 / 24.8 1 28.2 / 20.2 / 24.7 1	26.1 / 16.8 / 21.1 23.7 / 17.9 / 21.4
Clarify SFT Clarify DPO	2	31.0 / 21.6 / 25.9 2	37.6 / 26.5 / 31.5 2	35.7 / 23.6 / 28.8
w/ ŘM	2	31.0 / 25.7 / 28.3 2	36.2 / 26.7 / 30.9 2	33.9 / 25.7 / 29.5
w/ Likelihood	2	30.2 / 23.9 / 27.2 2	43.5 / 29.6 / 359 2	37.3 / 26.8 / 31.5
w/ Match	2	38.3 / 28.2 / 32.8 2	42.9 / 3.17 / 36.5 2	40.7 / 28.6 / 33.9
Clarify-or-Direct-Ans				
SFT	1.12	25.6 / 18.4 / 21.3 1.40	35.3 / 23.5 / 28.2 1.43	22.3 / 19.0 / 20.3
DPO	1.56	28.9 / 21.1 / 24.3 1.57	35.2 / 25.1 / 29.1 1.61	28.2 / 22.2 / 24.6

- Clarify-or-Answer methods strike a balance between effectiveness and efficiency.
- DPO with double-turn preference data consistently outperforms SFT.

Action-Based Contrastive Self-Training (ACT)



- Nepeat i rocess onth convergence
- ☐ ACT focuses on the clarification preference optimization in multi-turn conversations
- ☐ Construct conversation data with contrastive action pairs (*clarify* or *answer*) as the preference data