

1

LLM-based Query Enhancement

Yifei Yuan

ETH Zürich, University of Copenhagen

Introduction

Query Enhancement: enhances the query based on pseudo-relevance feedback or external knowledge sources, given that search queries are often **short**, **ambiguous**, **or lack necessary background information**.

Large Language Models (LLMs) have seen a growing interest in the Information Retrieval (IR) community in recent years. They exhibit several properties, including the ability to answer questions and generate text, that make them powerful tools.

Taxonomies

Taxonomies

- Resolving ambuity
 - Query expansion
 - Query clarification
 - Query suggestion
 - Query rewrite
- Interactive query refinement

Taxonomies

Query Clarification

Proves to be efficient for ambiguous queries with multiple answers LLMs must learn to clarify the query by identifying user's intent

- User Request: an initial user request in the conversational form, e.g. *What is Fickle Creek Farm*, with a label reflects if clarification is needed ranged from 1 to 4;
- Clarification questions: a set of possible clarifying questions, e.g. do you want to know the location of fickle creek farm;
- User Answers: each questions is supplied with a user answer, e.g. no i want to find out where can i purchase fickle creek farm products.

Query Expansion

Query expansion augments a user's original query with additional terms or phrases to improve retrieval performance.

Can be divided into **internal expansion** and **external expansion**.

Jagerman et al., "Query Expansion by Prompting Large Language Models" (Arxiv'23) Nogueira et al, "Document Expansion by Query Prediction" (EMNLP'19)

Internal Query Expansion

It focuses on maximizing the value of existing information in the original query or the used LLM **without relying on external knowledge sources**

External Query Expansion

It introduces supplementary data from outside sources (e.g., Web or Knowledge base) to fill gaps, provide additional context, or broaden the scope of the content

Sources: WordNet, ontologies (e.g. DBpedia), search logs, etc...

Xia et al., "Knowledge-Aware Query Expansion with Large Language Models for Textual and Relational Retrieval" (NAACL'25)

External Query Expansion

It introduces supplementary data from outside sources (e.g., Web or Knowledge base) to fill gaps, provide additional context, or broaden the scope of the content

Pros and Cons?

Works by suggesting alternative or additional queries based on what the user has typed so far.

Can be formulated as a recommendation problem.

LLMs can generate the recommendation suggestions with simple prompting

"Related Searches" Module

Prompt Queries Prompt Recommendations

query: google scholar
recommendations: google scholar search; google scholar citation; google scholar advanced search; google scholar login; google scholar login sign up; google scholar impact factor
query: air france
recommendations: air france booking; air france flights; air france contact number; air france business class; air france careers; air france luggage fees
query: {USER QUERY}
recommendations:
Query

Query Suggestion

LLM with knowledge injection boosts the performance further

Query: Baye		(C) Memory Stream	Time Stems	ery Suggestion	
Types	Models	Validness (†)	Relatedness (\uparrow)	Usefulness (\uparrow)	Ranking (\downarrow)
	Query Suggestion	1.769	0.962	0.948	2.736
Baselines	Contextual Query Suggestion	1.966	1.267	1.245	2.415
	Contextual Query Suggestion w/ S	\mathcal{K}_s 1.822	1.192	1.166	2.654
Ours	K-LaMP (Ours)	1.966	1.482	1.455	2.160
in this domain is t	the Bayesian algorithm, which calculates the probability of am based on the frequency of certain words or phrases.	Bayesian algorithm 3 Unsupervised ML 0		Suggestion w/ Lapsed Entit in algorithms for spam filte	

Baek et al, WWW 2024, Knowledge-Augmented Large Language Models for Personalized Contextual Query Suggestion

Query rewrite transforms a user's context-dependent query into a fully-specified version that can be understood independently of the surrounding context.

Two key challenges:

- Coreference resolution
- Ellipsis completion

Conversation Contexts

- Q1 What can you tell me about *Beyoncé's* voice ?
- A1 Her tone and timbre as particularly distinctive...
- Q_2 What are some other facts about *her* voice ?
- $\mathcal{A}_2 \quad \text{The New York Times commented her voice is "velvety yet tart"}...$
- Q₃ What else ?
- \mathcal{A}_3 Other critics praises she was "capable of punctuating any beat".

Query Rewrites

- Q_2^* What are some other facts about *Beyoncé's* voice ?
- Q_3^* What else can you tell me about Beyoncé's voice?

LLM-based Query Rewrite

Weakly-supervised training can be adopted for the difficulty to find gold labels

Yuan et al., "CO3: Low-resource Contrastive Co-training for Generative Conversational Query Rewrite" (COLING '24)

LLM-based Query Rewrite

LLMs show promise in generating high-quality rewrites **especially** in the low-resource setting

	Model	BLEU-1	BLEU-2	ROUGE-1	ROUGE-2	ROUGE-L	EM	NDCG@3
	Original	72.50	66.17	79.71	65.66	79.66	18.65	30.40
	Allen Coref	79.37	74.29	86.04	76.72	85.94	36.13	43.59
	GQR	16.02	10.63	27.37	13.13	27.29	1.47	12.56
Zero-	GPT-2	15.41 (15.45)	10.54 (10.40)	27.17 (28.46)	12.42 (12.86)	26.75 (28.12)	1.17 (1.86)	11.32 (11.56)
shot	MS MARCO	35.19 (34.62)	19.90 (19.73)	31.06 (29.93)	13.18 (13.21)	30.41 (29.39)	0.93 (0.93)	16.90 (14.32)
SHOL	Rule Based	82.49 (79.31)	74.29 (72.30)	82.92 (82.93)	71.03 (70.53)	81.55 (81.86)	25.87 (26.81)	43.72 (43.25)
	CO3	83.94* (80.91)	75.36* (73.37)	84.08* (83.08)	72.32* (71.31)	82.94* (82.02)	27.91* (27.04)	45.72* (44.67)
	L-CO3	89.42 [†]	77.31 [†]	89.06 [†]	74.90 [†]	85.26 [†]	30.55 [†]	48.90 [†]
	Seq2Seq	72.11	62.47	78.75	65.61	78.02	6.45	20.42
	GQR	84.84	78.80	87.42	77.93	86.40	40.82	47.28
Few-	GPT-2	84.61 (83.20)	78.62 (77.00)	87.27 (85.52)	77.86 (75.79)	86.25 (84.66)	40.79 (35.89)	46.74 (43.28)
shot	Rule Based	85.71 (82.35)	79.66 (76.23)	88.08 (85.91)	78.71 (75.97)	86.97 (85.09)	40.79 (36.13)	49.21 (46.76)
	Self-Learn	85.12 (83.53)	79.73 (77.51)	88.22 (86.82)	79.36 (76.90)	87.38 (85.91)	43.12 (38.23)	49.24 (46.53)
	CO3	85.87* (83.42)	80.24* (78.14)	89.04* (86.95)	80.08* (77.48)	87.92* (86.36)	44.05* (40.79)	50.43* (48.26)
	L-CO3	90.05 [†]	86.47 [†]	93.26 [†]	85.28 [†]	92.43 [†]	49.07 [†]	56.22 [†]

Yuan et al., "CO3: Low-resource Contrastive Co-training for Generative Conversational Query Rewrite" (COLING '24)

LLM-based Query Rewrite

Instruction-tuning also proves to be an efficient way for rewriting the query

7	Query	QR	eCC (82	209)	QuA	C-Conv	(6396)	NQ	Conv (1	442)	TRE	C-Conv	(371)
Gi	4 <i>y</i>	MRR	MAP	R@10	MRR	MAP	R@10	MRR	MAP	R@10	MRR	MAP	R@10
ad sh	Original	9.30	8.87	15.50	9.29	8.84	15.20	9.06	8.64	15.14	10.30	10.27	22.10
an	Human	39.81	38.45	62.65	40.32	38.98	62.90	40.78	39.05	63.80	27.34	27.04	53.77
(BM25)	T5QR	33.67	32.50	53.68	34.04	32.90	53.83	34.24	32.66	53.92	25.23	24.96	50.13
BN	ConQRR	38.30	-	60.10	39.50	-	61.60	37.80	-	58.00	19.80	-	43.50
e e	ConvGQR	44.10	-	64.40	-	-	-	-	-	-	-	-	-
A 8	RW(ZSL)	42.63	41.31	60.46	45.43	44.11	63.20	36.43	34.81	54.69	18.50	18.26	35.58
N to m	RW(FSL)	46.96	45.53	65.57	49.81	48.38	68.28	41.51	39.71	60.13	19.02	18.86	39.89
Q	ED(Self)	49.39	47.89	67.01	53.01	51.52	70.46	41.57	39.69	59.63	17.43	17.08	36.25
R cl	ED(T5QR)	47.93	46.40	66.25	50.67	49.18	68.84	42.69	40.64	60.67	21.04	20.79	43.26
Ci Ci	Original	12.12	11.49	18.74	11.34	10.69	17.79	13.11	12.57	19.49	21.76	21.11	32.08
5	Human	43.15	41.27	66.12	40.67	38.92	64.59	54.01	51.25	73.13	43.74	42.98	65.23
(GTR)	T5QR	37.67	35.93	58.65	35.51	33.88	57.23	46.95	44.47	64.43	38.94	38.16	60.51
. 5	ConQRR	41.80	-	65.10	41.60	-	65.90	45.30	-	64.10	32.70	-	55.20
ہے ج nse (G	ConvGQR	42.00	-	63.50	-	-	-	-	-	-	-	-	-
Dense	RW(ZSL)	40.64	38.95	62.28	40.12	38.48	62.47	44.85	42.57	63.58	33.26	32.88	54.09
<u> </u>	RW(FSL)	43.89	42.09	66.45	43.50	41.78	66.87	48.60	46.12	68.10	32.37	31.79	52.65
<u> </u>	ED(Self)	44.99	43.19	67.34	45.21	43.48	68.30	47.64	45.20	67.27	30.91	30.48	51.03
	ED(T5QR)	44.76	42.90	66.64	44.29	42.50	66.65	49.67	47.12	69.22	33.90	33.43	56.47

- In-context demonstration helps
- LLM improvement is more obvious in dense retrieval

Ye et al., "Enhancing Conversational Search: Large Language Model-Aided Informative Query Rewriting" (EMNLP Findings '23)

Interactive Query Refinement

Interactive query refinement generally allows the system to rewrite, disambiguate, decompose a query when interacting with a user

Interactive Query Refinement

Adopts a tree-decoding strategy for selecting the best way for refinement LLM serves as an efficient way for refining the query and incorporating RAG

Model	HOTPOTQA	2WIKI	MUSIQUE	AVG.							
Proprietary LLM											
GPT-3.5-TURBO											
+ Chain-of-Thought	58.6	43.9	32.3	44.9							
+ Chain-of-Note	52.5	34.1	24.6	37.1							
GPT-4											
+ Chain-of-Thought	71.4	70.1	50.3	63.9							
+ Chain-of-Note	72.4	58.3	44.1	58.3							
Baseline v	vithout Retrieval	l									
LLama2-7B (Zero Shot)	6.6	16.0	3.0	8.5							
LLama2-7B-Chat (Zero Shot)	3.6	7.9	1.8	4.4							
LLama2-7B (SFT on Multi Hop QA)	34.7	34.2	6.8	25.2							
LLama2-7B (SFT on No Augmented Set)	35.6	30.8	6.7	24.4							
Baseline	with Retrieval										
LLama2-7B (Zero Shot)	16.7	18.7	7.4	14.3							
LLama2-7B-Chat (Zero Shot)	2.8	3.5	1.8	2.7							
LLama2-7B (SFT on Multi Hop QA)	37.5	32.3	7.9	25.9							
LLama2-7B (SFT on No Augmented Set)	43.5	28.8	9.1	27.1							
RQ-RAG (Ours)	62.6	44.8	41.7	49.7							
	(19.1↑)	(16.0↑)	(32.6†)	(22.6†)							

Common Techniques

Few-shot Prompting

Pseudo data (e.g. queries, documents) can be synthesized by prompting LLMs in the few-shot manner.

Synthesized data can be attached and added with the original query for better retrieval results.

SimLM (Wang et al., 2023)	1	41.1	87.8	98.7	71.4	69.7
+ query2doc	1	41.5 ^{+0.4}	88.0+0.2	98.8 ^{+0.1}	72.9+1.5	71.6+1.9
E5 _{base} + KD (Wang et al., 2022)	1	40.7	87.6	98.6	74.3	70.7
+ query2doc	1	41.5 ^{+0.8}	88.1 ^{+0.5}	98.7 ^{+0.1}	74.9 ^{+0.6}	72.5 ^{+1.8}

_	LLM Prompts
Write a pa	assage that answers the given que
Query: w	hat state is this zip code 85282
Passage:	Welcome to TEMPE, AZ 85282.
85282 is a	a rural zip code in Tempe, Arizona.
The popu	lation is primarily white

Query: w	hen was pokemon green released
Passage:	
Passage:	
Passage:	
Passage:	LLM Output
Pokemon	Green was released in Japan on
Pokemon February 2	Green was released in Japan on 27th, 1996. It was the first in the
Pokemon February 2 Pokemon	Green was released in Japan on 27th, 1996. It was the first in the series of games and served as the
Pokemon February 2 Pokemon basis for P	Green was released in Japan on 27th, 1996. It was the first in the series of games and served as the okemon Red and Blue, which wer
Pokemon February 2 Pokemon basis for P released in	Green was released in Japan on 27th, 1996. It was the first in the series of games and served as the

CoT Prompting

Adding CoT generally improves the performance in most metrics!

Dataset	Metrics	Direct answer	Add CoT
	Acc(%)	42.65	44.60
AmbigNQ	TCA(s)	1.98	5.26
	TAI(s/%)	NaN	1538.50
	Acc(%)	31.75	38.00
Hotpot	TCA(s)	2.74	5.72
-	TAI(s/%)	NaN	416.14
	EM	44.20	65.34
MMLU-STEM	TCA(s)	2.13	3.90
	TAI(s/%)	NaN	273.69
	Acc(%)	32.70	32.80
PopQA	TCA(s)	1.39	6.78
	TAI(s/%)	NaN	3534.20

Instruction Tuning

INTERS: an instruction tuning dataset for search tasks

Raw data	Templates (e.g., for CANARD)	<i>n</i> -shot examples (<i>e.g.</i> , <i>n</i> =0) Tas	k description
Context Q: when did april and jackson move in A: In the aftermath of the shooting, April	Context: {context} Query: {query} Please reformulate the query based on the context. {reformulation} Template 1	The query reformulation task renhances user-input queries to be more explicit and comprehensible for search engines Context: Q: when did april and jackson move in A: In the	
Query what season	In a conversational question answering system, the question	aftermath of the shooting, April Query: what season Please reformulate the query based	INTERS
Reformulation what season did april and jackson move in	<pre>"{query}" is asked. The previous context is "{context}". How can we rephrase the query? {reformulation} Template 2</pre>	on the context. what season did april and jackson move in	
(1) Data collecting & preprocessing	(2) Manual writing	(3) Template filling & length filtering	(4) Examples- proportional mixing

Instruction Tuning

Most LLMs can obtain the capability to solve search tasks through instruction tuning on INTERS.

Zhu et al., "INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning" (ACL '24)

Agentic RAG

Agentic RAG refers to the use of *agent-like behavior* in Retrieval-Augmented Generation systems, where the system actively plans and executes steps—such as rewriting, refining, or expanding a user's query to improve retrieval quality and response generation.

Applications

Multimodal Query Rewrite

Definition: Reformulating user queries by leveraging both textual and visual context to improve retrieval relevance.

Challenges:

- How to effectively align multimodal features?
- Matain user intent during rewrite
- Handling ambiguity in multimodal input

the dog

 Q_1 : Is it a black Labrador? Q_1^* : Is the dog a black Labrador? A_1 : Yes.

 Q_2 : How may people are there in the scene? Q_2^* : How may people are there in the scene? A_2 : Just one.

 Q_3 : Can you see other people? Q_3^* : Can you see other people except for the man? A_3 : No.

the man

Multimodal Query Rewrite

Techniques: Cross-modal fusion models for encoding \rightarrow an encoderdecoder model with pointer mechanism

Figure 2: The overall architecture of our model.

Yuan et al., "Mcqueen: a benchmark for multimodal conversational query rewrite" (EMNLP '23)

the

Multimodal Query Rewrite

	BLEU-2	BLEU-4	ROUGE-2	ROUGE-L	METEOR	EM
Original	57.27	48.44	54.86	73.45	38.28	- -
AllenNLP Coref	59.72	50.21	56.09	76.07	39.87	8.97 96.14
L-Gen	77.14	66.31	74.44	84.68	46.09	41.84 57.77
T(E)-Gen	78.03	65.40	75.53	86.80	47.32	41.37 56.58
T(L)-Gen	79.30	67.16	76.28	88.14	49.23	42.06 58.25
L-Ptr	77.46	69.46	76.07	86.65	48.63	47.87 66.72
T(E)-Ptr	79.52	68.26	77.27	88.49	50.10	49.49 68.94
T(L)-Ptr	80.12	68.41	78.40	89.54	50.56	48.15 69.53
VLBart	90.01	84.28	88.67	93.80	58.87	64.28 86.89
VLT5	90.37	84.87	89.23	94.10	59.45	65.62 89.95
VLBart-Ptr	90.16	84.52	88.87	93.89	59.26	64.87 87.22
VLT5-Ptr	90.47	84.94	89.32	94.45	59.46	65.67 90.22

Pointer mechanism does help the results. But more techniques could also be leveraged (e.g. RAG, RLHF, ...)

Yuan et al., "Mcqueen: a benchmark for multimodal conversational query rewrite" (EMNLP '23)

Multimodal Query Suggestion

Task: Generate textual query suggestions for image queries

However, predicting user needs from a single user query is challenging.

Multimodal Query Suggestion

Agent-I: generating intentional candidate suggestions *Agent-D*: choosing diverse suggestions from the candidates PolicyNet is trained with RLHF for generating candidate suggestions

Wang et al., "Multimodal Query Suggestion with Multi-Agent Reinforcement Learning from Human Feedback" (WWW '24)

Multimodal Query Suggestion

• Two search engine scenarios:

(1) generation-based

(2) <u>retrieval-based</u>

- δ denotes the accuracy of labeling the generated suggestions
- RL4Sugg works the best with little parameters

Models	#Train/#Total	Busin	ess Fine	e-tuned	Ima	geNet 0	-Shot
woulds	Params	DCG	DIV	δ	DCG	DIV	δ
Flamingo	1.4B/3.4B	0.73	0.25	81.7%	0.67	0.23	80.6%
BLIP-2	104M/3.1B	0.59	0.17	68.3%	0.47	0.18	69.2%
LLaVA	14M/13B	0.60	0.25	73.3%	0.47	0.24	76.5%
RL4Sugg	208M/3.1B	0.89	0.25	83.3%	0.87	0.24	86.9%

Models	#Train/#Total	Busin	ess Fine	-tuned	Imag	geNet 0-	shot
Models	Params	PNR	R@1	R@3	PNR	R@1	R@3
CLIP	300M/300M	1.30	0.23	0.33	0.90	0.21	0.32
BLIP-2	104M/3.1B	1.05	0.27	0.60	0.73	0.26	0.58
RL4Sugg	208M/3.1B	2.80	0.63	0.83	2.17	0.58	0.74

Summary

❑ Taxonomy

- **Query Suggestion/Rewrite/Expansion/...**
- □ Interactive Query Refinement
- **_** ...

Common Techniques

- □ CoT Prompting
- In-context Learning
- □ Instruction Tuning
- **_** ...

Applications